In a multifractal paradigm of motion, nonlinear behavior of transient periodic plasmas, such as Schrodinger and hydrodynamic-type regimes, at various scale resolutions are represented. In a stationary case of Schrodinger-type regimes, the functionality of “hidden symmetry” of the group SL (2R) is implied though Riccati–Gauge different “synchronization modes” among period plasmas’ structural units. These modes, expressed in the form of period doubling, damped oscillations, quasi-periodicity, intermittences, etc., mimic the various non-linear behaviors of the transient plasma dynamics similar to chaos transitions scenarios. In the hydrodynamic regime, the non-Newtonian behavior of the transient plasma dynamics can be corelated with the viscous tension tensor of the multifractal type. The predictions given by our theoretical model are confronted with experimental data depicting electronic and ionic oscillatory dynamics seen by implementing the Langmuir probe technique on transient plasmas generated by ns-laser ablation of nickel and manganese targets.
By assimilating biological systems, both structural and functional, into multifractal objects, their behavior can be described in the framework of the scale relativity theory, in any of its forms (standard form in Nottale’s sense and/or the form of the multifractal theory of motion). By operating in the context of the multifractal theory of motion, based on multifractalization through non-Markovian stochastic processes, the main results of Nottale’s theory can be generalized (specific momentum conservation laws, both at differentiable and non-differentiable resolution scales, specific momentum conservation law associated with the differentiable–non-differentiable scale transition, etc.). In such a context, all results are explicated through analyzing biological processes, such as acute arterial occlusions as scale transitions. Thus, we show through a biophysical multifractal model that the blocking of the lumen of a healthy artery can happen as a result of the “stopping effect” associated with the differentiable-non-differentiable scale transition. We consider that blood entities move on continuous but non-differentiable (multifractal) curves. We determine the biophysical parameters that characterize the blood flow as a Bingham-type rheological fluid through a normal arterial structure assimilated with a horizontal “pipe” with circular symmetry. Our model has been validated based on experimental clinical data.
In the framework of the multifractal hydrodynamic model, the correlations informational entropy–cross-entropy manages attractive and repulsive interactions through a multifractal specific potential. The classical dynamics associated with them imply Hubble-type effects, Galilei-type effects, and dependences of interaction constants with multifractal degrees at various scale resolutions, while the insertion of the relativistic amendments in the same dynamics imply multifractal transformations of a generalized Lorentz-type, multifractal metrics invariant to these transformations, and an estimation of the dimension of the multifractal Universe. In such a context, some correspondences with standard cosmologies are analyzed. Since the same types of interactions can also be obtained as harmonics mapping between the usual space and the hyperbolic plane, two measures with uniform and non-uniform temporal flows become functional, temporal measures analogous with Milne’s temporal measures in a more general manner. This work furthers the analysis published recently by our group in “Towards Interactions through Information in a Multifractal Paradigm”.
An increasing number of studies are beginning to show that both low-density lipoprotein and high-density lipoprotein cholesterol can constitute risk factors for myocardial infarction. Such a behaviour has been called by experts in the field the “chameleonic effect” of cholesterol. In the present paper, a fractal/multifractal model for low-density lipoprotein and high-density lipoprotein cholesterol dynamics is proposed. In such a context, a fractal/multifractal tunneling effect for systems with spontaneous symmetry breaking is analyzed so that if the spontaneous symmetry breaking is assimilated to an inflammation (in the form of a specific scalar potential), then a coupling between two fractal/multifractal states can be observed. These two states, which have been associated to biological structures such as low-density lipoprotein and high-density lipoprotein, transfer their states through a fractal/multifractal tunneling effect. Moreover, in our opinion, the widely used notions of “good” and “bad” cholesterol must be redefined as two different states (low-density lipoprotein and high-density lipoprotein) of the same biological structure named “cholesterol.” In our work, for the first time in the specialized literature, low-density lipoprotein and high-density lipoprotein have been regarded as two different states of the same biological structure (named “cholesterol”), such as in nuclear physics, the neutron and proton are two different states of the same particle named nucleon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.