To explore the relative development of the dorsal and ventral extrastriate processing streams, we studied the development of sensitivity to form and motion in macaque monkeys (Macaca nemestrina). We used Glass patterns and random dot kinematograms (RDK) to assay ventral and dorsal stream function, respectively. We tested 24 animals, longitudinally or cross-sectionally, between the ages of 5 weeks and 3 years. Each animal was tested with Glass patterns and RDK stimuli with each of two pattern types – circular and linear – at each age using a two alternative forced-choice task. We measured coherence threshold for discrimination of the global form or motion pattern from an incoherent control stimulus. Sensitivity to global motion appeared earlier than to global form and was higher at all ages, but performance approached adult levels at similar ages. Infants were most sensitive to large spatial scale (Δx) and fast speeds; sensitivity to fine scale and slow speeds developed more slowly independently of pattern type. Within the motion domain, pattern type had little effect on overall performance. However, within the form domain, sensitivity for linear Glass patterns was substantially poorer than that for concentric patterns. Our data show comparatively early onset for global motion integration ability, perhaps reflecting early development of the dorsal stream. However, both pathways mature over long time courses reaching adult levels between two and three years after birth.
Adults have little difficulty perceiving objects as complete despite occlusion, but newborn infants perceive moving, partly occluded objects solely in terms of visible surfaces. The developmental mechanisms leading to perceptual completion have never been adequately explained. Here, we examine the potential contributions of oculomotor behavior and motion sensitivity to perceptual completion performance in individual infants. Young infants were presented with a center-occluded rod, moving back and forth against a textured background, to assess perceptual completion. Infants also participated in tasks to assess oculomotor scanning patterns and motion direction discrimination. Individual differences in perceptual completion performance were strongly correlated with scanning patterns, but were unrelated to motion direction discrimination. We present a new model of development of perceptual completion that posits a critical role for targeted visual scanning, an earlydeveloping oculomotor action system.
Prism adaptation is a form of visuomotor learning in which the visual and motor systems need to be adjusted because a visual perturbation is produced by horizontally displacing prisms. Despite being known for over two centuries, the neuronal substrates of this phenomenon are not yet completely understood. In this article the possible role of the basal ganglia in this kind of learning was analysed through a study of Huntington's and Parkinson's disease patients. A throwing technique requiring the use of open loop feedback was used. The variables analysed were visuomotor performance, adaptation rate and magnitude, and the after-effect. The results clearly showed that both Huntington's and Parkinson's disease groups learned at the same rate as control subjects. In addition, despite having a disturbed visuomotor performance, both experimental groups showed the same adaptation magnitude as the control group. Finally, the after-effect, which is measured after removing the prisms, is reduced in both patients groups. This reduction leads to a disruption in the normal adaptation-after-effect correlation found in normal volunteers. These results suggest that basal ganglia are not involved in this type of open-looped visuomotor learning. The large number of patients studied as well as the similarity of the findings between both populations support this hypothesis. By contrast, there is an impairment in the after-effect on both basal ganglia patient populations. This impairment may be the result of the deterioration of the perceptual recalibration process involved in visuomotor learning.
Prism adaptation, a form of procedural learning, requires the integration of visual and motor information for its proper acquisition. Although the role of the visual feedback has begun to be understood, the nature of the motor information necessary for the development of the adaptation remains unknown. In this work we have tested the idea that modifying the arm load at different stages of the adaptation process, and the ensuing change of motor information perceived by the subjects, would modify the final properties of the adaptation. We trained a set of subjects to throw balls to a target while wearing prism glasses and varied the weight of their arms at different time points during the task. We observed that the acquisition of the adaptation was not affected by the change in load. However, its persistence (i.e., the aftereffect) was reduced when tested under a weight condition different from the training trials. Furthermore, when the training weight conditions were restored later during testing, a second, late aftereffect was unmasked, suggesting that the missing aftereffect did not disappear but had remained latent. Our results show that the internal representation of a motor memory incorporates information about load conditions and that the memory stored under a specific weight condition can be fully retrieved only when the original training condition is restored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.