Electrochemical capacitors and lithium-ion batteries have seen little change in their electrolyte chemistry since their commercialization, which has limited improvements in device performance. Combining superior physical and chemical properties and a high dielectric-fluidity factor, the use of electrolytes based on solvent systems that exclusively use components that are typically gaseous under standard conditions show a wide potential window of stability and excellent performance over an extended temperature range. Electrochemical capacitors using difluoromethane show outstanding performance from -78° to +65°C, with an increased operation voltage. The use of fluoromethane shows a high coulombic efficiency of ~97% for cycling lithium metal anodes, together with good cyclability of a 4-volt lithium cobalt oxide cathode and operation as low as -60°C, with excellent capacity retention.
A modified liquefied gas electrolyte with the addition of fully coordinated cosolvent enables unique Li solvation structures. Their favorable properties lead to dendrite-free high Coulombic efficiency Li-metal anode cycling and enable lowtemperature operation even down to À60 C with high Li-metal efficiency. The system shows potential for improved energy density and low-temperature operation of Li-metal batteries.
Liquefied gas electrolytes with unique solvation structure enable high ionic conductivity in extended temperature ranges, supporting wide-temperature high-voltage lithium metal batteries.
A Si composite anode with the ionic liquid electrolyte EMIFSI shows superior rate capability. The decomposition products of EMIFSI are significantly different from those of carbonate electrolytes.
We report CoFe2O4 nanoparticles (NPs) synthesized using a facile hydrothermal growth and their attachment on 3D carbon fiber papers (CFPs) for efficient and durable oxygen evolution reaction (OER). The CFPs covered with CoFe2O4 NPs show orders of magnitude higher OER performance than bare CFP due to high activity of CoFe2O4 NPs, leading to a small overpotential of 378 mV to get a current density of 10 mA/cm(2). Significantly, the CoFe2O4 NPs-on-CFP electrodes exhibit remarkably long stability evaluated by continuous cycling (over 15 h) and operation with a high current density at a fixed potential (over 40 h) without any morphological change and with preservation of all materials within the electrode. Furthermore, the CoFe2O4 NPs-on-CFP electrodes also exhibit hydrogen evolution reaction (HER) performance, which is considerably higher than that of bare CFP, acting as a bifunctional electrocatalyst. The achieved results show promising potential for efficient, cost-effective, and durable hydrogen generation at large scales using earth-abundant materials and cheap fabrication processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.