A novel approach to global gyrokinetic simulation is implemented in the flux-tube code stella. This is done by using a subsidiary expansion of the gyrokinetic equation in the perpendicular scale length of the turbulence, originally derived by Parra and Barnes [Plasma Phys. Controlled Fusion, 57 054003, 2015], which allows the use of Fourier basis functions while enabling the effect of radial profile variation to be included in a perturbative way. Radial variation of the magnetic geometry is included by utilizing a global extension of the Grad-Shafranov equation and the Miller equilibrium equations which is obtained through Taylor expansion. Radial boundary conditions that employ multiple flux-tube simulations are also developed, serving as a more physically motivated replacement to the conventional Dirichlet radial boundary conditions that are used in global simulation. It is shown that these new boundary conditions eliminate much of the numerical artefacts generated near the radial boundary when expressing a non-periodic function using a spectral basis. We then benchmark the new approach both linearly and non-linearly using a number of standard test cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.