Recent studies from our group and many others have shown the ability of histone deacetylase (HDAC) inhibitors for retarding the growth of carcinomas of cervix, colon and rectum in vitro. A search for naturally occurring HDAC inhibitors continues due to the adverse effects associated with known HDAC inhibitors like SAHA and TSA. Therefore in the current study, naturally occurring cinnamic acids derivatives were screened for HDAC inhibitory effect using in silico docking method which identified cinnamic acids as potential candidates. Cinnamic acids (CA) are naturally occurring phenolic compounds known to exhibit anticancer properties. However, it is not clearly known whether the anticancer properties of CA derivatives are due to the inhibition of oncogenic HDACs, if so how the efficacy varies among various CA derivatives. Hence, the HDAC inhibitory potential of CA derivatives containing increasing number of hydroxylic groups or methoxy moieties was determined using Discovery Studio software and the most potent CA derivatives tested ex vivo (biochemical assay) as well as in vitro (using cell based assay). Among CA derivatives tested, dihydroxy cinnamic acid (DHCA, commonly known as caffeic acid) exhibited better interactions with HDAC2 (compared to other isoforms) in silico and inhibited its activity ex vivo as well as in vitro. Targeted reduction of HDAC activity using DHCA induced death of cancer cells by (a) generating reactive oxygen species, (b) arresting cells in S and G2/M phases; and (c) induction of caspase-3 mediated apoptosis. In conclusion, we demonstrated that DHCA inhibited cancer cell growth by binding to HDAC followed by the induction of apoptosis.
Oxazine derivatives R 0595 Synthesis of 4H-Imidazo[2,1-c][1,4]benzoxazin-4-yl Acetic Acids and Esters asPossible COX-2 Inhibitors. -Some new imidazobenzoxazinylacetic acid derivatives (IV) and (V) are synthesized and evaluated for their COX-2 inhibitory activity. None of the compounds exhibit significant inhibition compared to the standard Celecoxib. -(JAYAVEERA, K. N.; SAILAJA, S.; REDDANNA, P.; REDDY, D. B.; REDDY*, G. J.; RAO, K. S.; Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 45 (2006) 3, 792-795; R&D Lab., Dr. Jagath Reddy's Heterocycl., Hyderabad 500 037, India; Eng.) -H. Toeppel 28-151
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.