The increase in natural gas production in North America resulting from the implementation of new technologies related to the fracturing (fracking) of natural gas-bearing shale reservoirs has enhanced the security of supply and lowered energy costs in the continent. Yet the environmental impact associated with shale gas development has raised concerns and debate among energy and environmental policy makers as to how best to address these concerns. As Canada's largest producer of natural gas, the Province of Alberta is an example of a jurisdiction with numerous regulations for dealing with such environmental risks. This paper applies the CO/RE model of Konschnik and Bolingin examining Alberta's environmental regulatory framework and the impact; it will have on further shale gas production in the province. Aside from the identification of risks associated with increased seismicity, the results of this examination suggest that the current regulatory environment does not appear to have any adverse effect on current and future shale gas production within the province. Furthermore, Alberta's environmental regulation has influenced shale gas producers to pursue innovation in technology and engineering practice and has helped establish a collaborative approach to mitigating environmental risk.
The work described in this paper is a part of the DOE/LeRC “Advanced Conversion Technology Project” (ACT). The program is a multiple contract effort with funding provided by the Department of Energy and technical program management provided by NASA LeRC. Testing has been done burning a petroleum distillate fuel (ERBS fuel), a coal derived fuel (SRC II middle distillate), a petroleum residual fuel, and various blends of these fuels. Measurements are made of NOx CO, and UHC emissions, and other measurements are made to evaluate combustor performance. Results to date indicate that rich-lean diffusion flames, with low fuel bound nitrogen conversion, are achievable with very high combustion efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.