[1] The work presented here evaluates polar stratospheric ozone simulations from the Whole Atmosphere Community Climate Model (WACCM) for the Arctic winter of [2004][2005]. We use the Specified Dynamics version of WACCM (SD-WACCM), in which temperatures and winds are nudged to meteorological assimilation analysis results. Model simulations of ozone and related constituents generally compare well to observations from the Earth Observing System Microwave Limb Sounder (MLS). At most times, modeled ozone agrees with MLS data to within~10%. However, a systematic high bias in ozone in the model of~18% is found in the lowermost stratosphere in March. We attribute most of this ozone bias to too little heterogeneous processing of halogens late in the winter. We suggest that the model under-predicts ClONO 2 early in the winter, which leads to less heterogeneous processing and too little activated chlorine. Model HCl could also be overestimated due to an underestimation of HCl uptake into supercooled ternary solution (STS) particles. In late winter, the model overestimates gas-phase HNO 3 , and thus NO y , which leads to an over-prediction of ClONO 2 (under-prediction of activated chlorine). A sensitivity study, in which temperatures for heterogeneous chemistry reactions were reduced by 1.5 K, shows significant improvement of modeled ozone. Chemical ozone loss is inferred from the MLS observations using the pseudo-passive subtraction approach. The inferred ozone loss using this method is in agreement with or less than previous independent results for the Arctic winter of 2004-2005, reaching 1.0 ppmv on average and up to 1.6 ppmv locally in the polar vortex.
This study presents a classification of stratospheric extreme events during northern winter into events with or without a consistent downward propagation of anomalies to the troposphere. Anomalous strong and weak stratospheric polar vortex events are detected from daily time series of the polar cap averaged (60°–90°N) geopotential height anomaly. The method is applied to chemistry‐climate model data (E39CA and WACCM3.5) and reanalyses data (ERA40). The analyses show that in about 80% of all events no significant tropospheric response can be detected. The stratospheric perturbation of both weak and strong events with a significant tropospheric response persists significantly longer throughout the stratosphere compared to the events without a tropospheric response. The strength of the stratospheric perturbation determines the strength of the tropospheric response only to a small degree. Results are consistent across all three data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.