During 1989-1999, 11 volunteers were immunized by the bites of 1001-2927 irradiated mosquitoes harboring infectious sporozoites of Plasmodium falciparum (Pf) strain NF54 or clone 3D7/NF54. Ten volunteers were first challenged by the bites of Pf-infected mosquitoes 2-9 weeks after the last immunization, and all were protected. A volunteer challenged 10 weeks after the last immunization was not protected. Five previously protected volunteers were rechallenged 23-42 weeks after a secondary immunization, and 4 were protected. Two volunteers were protected when rechallenged with a heterologous Pf strain (7G8). In total, there was protection in 24 of 26 challenges. These results expand published findings demonstrating that immunization by exposure to thousands of mosquitoes carrying radiation-attenuated Pf sporozoites is safe and well tolerated and elicits strain-transcendent protective immunity that persists for at least 42 weeks.
A recombinant vaccine based on fusion of the circumsporozoite protein and HBsAg plus a potent adjuvant can protect against experimental challenge with P. falciparum sporozoites. After additional studies of protective immunity and the vaccination schedule, field trials are indicated for this new vaccine against P. falciparum malaria.
The RTS,S/AS01B malaria vaccine warrants comparative field trials with RTS,S/AS02A to determine the best formulation for the protection of children and infants. The association between complete protection and immune responses is a potential tool for further optimization of protection. Trial registration. ClinicalTrials.gov identifier NCT00075049.
In animals, effective immune responses against malignancies and against several infectious pathogens, including malaria, are mediated by T cells. Here we show that a heterologous prime-boost vaccination regime of DNA either intramuscularly or epidermally, followed by intradermal recombinant modified vaccinia virus Ankara (MVA), induces high frequencies of interferon (IFN)-gamma-secreting, antigen-specific T-cell responses in humans to a pre-erythrocytic malaria antigen, thrombospondin-related adhesion protein (TRAP). These responses are five- to tenfold higher than the T-cell responses induced by the DNA vaccine or recombinant MVA vaccine alone, and produce partial protection manifest as delayed parasitemia after sporozoite challenge with a different strain of Plasmodium falciparum. Such heterologous prime-boost immunization approaches may provide a basis for preventative and therapeutic vaccination in humans.
BACKGROUND
Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02A, a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children.
METHODS
In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain.
RESULTS
The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P = 0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P = 0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine.
CONCLUSIONS
On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.