Previous studies reported on both visible and invisible particles in University of Wisconsin (UW) solutions. Those particles originated from components of the bags. In recent clinical observations we noticed macroscopically visible, indissoluble particles in UW bags reaching subzero temperatures during transportation of organs and preservation solutions. In an experimental model we examined whether those particles could be detected following perfusion of abdominal organs with established perfusion solutions. UW-, HTK-or physiological saline solutions reached ª3 ∫ 0.5 aeC under conditions frequently applied during transportation. UW solutions demonstrated the accumulation of visible, indissoluble crystals and were subsequently used for the perfusion of abdominal organs in LEW rats. After perfusion with UW solutions stored at freezing temperatures, crystals were detected in all abdominal organs localized in and around vessels, bile ducts, glomeruli and in the interstitium of harvested livers, kidneys and pancreas. By spectroscopy, we were able to characterize crystals as adenosine. A 40-mm pore-size filter eliminated crystals from UW solutions. Crystals were absent in organs perfused with HTK-or saline solutions kept at subzero conditions. UW solutions can reach subzero temperatures under commonly used transportation conditions. Under these conditions, visible crystals accumulate and can be detected in abdominal organs of an experimental system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.