Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims. We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods. We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results. We observe a spectroscopic binary fraction of 0.35±0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s −1 . We compute the intrinsic binary fraction to be 0.51±0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f (log 10 P/d) ∼ (log 10 P/d) π (with log 10 P/d in the range 0.15−3.5) and f (q) ∼ q κ with 0.1 ≤ q = M 2 /M 1 ≤ 1.0. The power-law indexes that best reproduce the observed quantities are π = −0.45 ± 0.30 and κ = −1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (κ = −2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8 , i.e. ≈117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (K s > 15.5 mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Conclusions. Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars. Full Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
We present the results of a detailed analysis of the properties of dwarf O-type stars in a metal-poor environment. High-resolution, high-quality, ultraviolet and optical spectra of six O-type stars in the H II region NGC 346 have been obtained from a spectroscopic survey of O stars in the SMC. Stellar parameters and chemical abundances have been determined using NLTE line-blanketed photospheric models calculated with Tlusty. Additionally, we have modeled the spectra with the NLTE line-blanketed wind code, CMFGEN, to derive wind parameters. Stellar parameters and chemical abundances, and in particular iron abundances, obtained with the two NLTE codes compare quite favorably. This
The Isaac Newton Telescope (INT) Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800‐deg2 CCD survey of the northern Milky Way spanning the latitude range −5° < b < + 5° and reaching down to r′≃ 20 (10σ). Representative observations and an assessment of point‐source data from IPHAS, now underway, are presented. The data obtained are Wide Field Camera images in the Hα narrow‐band, and Sloan r′ and i′ broad‐band filters. We simulate IPHAS (r′−Hα, r′−i′) point‐source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles: this defines the expected colour properties of (i) solar metallicity stars, without Hα emission, and (ii) emission‐line stars. Comparisons with observations of fields in Aquila show that the simulations of normal star colours reproduce the observations well for all spectral types earlier than M. A further comparison between colours synthesized from long‐slit flux‐calibrated spectra and IPHAS photometry for six objects in a Taurus field confirms the reliability of the pipeline calibration. Spectroscopic follow‐up of a field in Cepheus shows that sources lying above the main stellar locus in the (r′− Hα, r′−i′) plane are confirmed to be emission‐line objects with very few failures. In this same field, examples of Hα deficit objects (a white dwarf and a carbon star) are shown to be readily distinguished by their IPHAS colours. The role IPHAS can play in studies of spatially resolved northern Galactic nebulae is discussed briefly and illustrated by a continuum‐subtracted mosaic image of Shajn 147 (a supernova remnant, 3° in diameter). The final catalogue of IPHAS point sources will contain photometry on about 80 million objects. Used on its own, or in combination with near‐infrared photometric catalogues, IPHAS is a major resource for the study of stellar populations making up the disc of the Milky Way. The eventual yield of new northern emission‐line objects from IPHAS is likely to be an order of magnitude increase on the number already known.
We present optical studies of the physical and wind properties, plus CNO chemical abundances, of 25 O9.5-B3 Galactic supergiants. We employ non-LTE, line blanketed, extended model atmospheres, which provide a modest downward revision in the effective temperature scale of early B supergiants of up to 1−2 kK relative to previous non-blanketed results. The so-called "bistability jump" at B1 (T eff ∼ 21 kK) from Lamers et al. is rather a more gradual trend (with large scatter) from v ∞ /v esc ∼ 3.4 for B0-0.5 supergiants above 24 kK to v ∞ /v esc ∼ 2.5 for B0.7-1 supergiants with 20 kK ≤ T eff ≤ 24 kK, and v ∞ /v esc ∼ 1.9 for B1.5-3 supergiants below 20 kK. This, in part, explains the break in observed UV spectral characteristics between B0.5 and B0.7 subtypes as discussed by Walborn et al. We compare derived (homogeneous) wind densities with recent results for Magellanic Cloud B supergiants and generally confirm theoretical expectations for stronger winds amongst Galactic supergiants. However, winds are substantially weaker than predictions from current radiatively driven wind theory, especially at mid-B subtypes, a problem which is exacerbated if winds are already clumped in the Hα line forming region. In general, CNO elemental abundances reveal strongly processed material at the surface of Galactic B supergiants, with mean N/C and N/O abundances 10 and 5 times higher than the Solar value, respectively, with HD 2905 (BC0.7 Ia) indicating the lowest degree of processing in our sample, and HD 152236 (B1.5 Ia + ) the highest.
We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a powerlaw dependence of mass loss on metal content,Ṁ ∝ Z m , and adopting a theoretical relation between the terminal flow velocity and metal content, v ∞ ∝ Z 0.13 (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 ± 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 10 5.2 L . Within the errors, this result is in agreement with the prediction m = 0.69 ± 0.10 by Vink et al. (2001, A&A, 369, 574). Absolute empirical values for the mass loss, based on Hα and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Hα and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Hα) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L ∼ 10 4.75 L , the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.