Abstract. The Last Glacial Maximum (LGM, 21,000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalise on the relative abundance of palaeoenvironmental observations and quantitative climate reconstructions already available for the LGM.
<div>
<div>
<div>We present results from an ensemble of eight climate models, each of which has carried out simulations of theearly Eocene climate optimum (EECO, &#8764;50 million years ago). These simulations have been carried out in the framework of DeepMIP (www.deepmip.org), and as such all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO<sub>2</sub> boundary conditions contribute between 3 and 5<sup>o</sup>C to Eocene warmth. Compared to results from previous studies, the DeepMIP simulations show in general reduced spread of global mean surface temperature response across the ensemble for a given atmospheric CO<sub>2</sub> concentration, and an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with preindustrial arises mostly from decreases in emissivity due to the elevated CO<sub>2</sub> (and associated water vapour and long-wave cloud feedbacks), whereas in terms of the meridional temperature gradient, the reduction in the Eocene is primarily due to emissivity and albedo changes due to the non-CO<sub>2</sub> boundary conditions (i.e. removal of the Antarctic ice sheet and changes in vegetation). Three of the models (CESM, GFDL, and NorESM) show results that are consistent with the proxies in terms of global mean temperature, meridional SST gradient, and CO<sub>2</sub>, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale the models lack skill. In particular, in the southwest Pacific, the modelled anomalies are substantially less than indicated by the proxies; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxiesor models in this region. Our aim is that the documentation of the large scale features and model-data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability; and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols</div>
</div>
</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.