The phase retrieval problem is of paramount importance in various areas of applied physics and engineering. The state of the art for solving this problem in two dimensions relies heavily on the pioneering work of Gerchberg, Saxton, and Fienup. Despite the widespread use of the algorithms proposed by these three researchers, current mathematical theory cannot explain their remarkable success. Nevertheless, great insight can be gained into the behavior, the shortcomings, and the performance of these algorithms from their possible counterparts in convex optimization theory. An important step in this direction was made two decades ago when the error reduction algorithm was identified as a nonconvex alternating projection algorithm. Our purpose is to formulate the phase retrieval problem with mathematical care and to establish new connections between well-established numerical phase retrieval schemes and classical convex optimization methods. Specifically, it is shown that Fienup's basic input-output algorithm corresponds to Dykstra's algorithm and that Fienup's hybrid input-output algorithm can be viewed as an instance of the Douglas-Rachford algorithm. We provide a theoretical framework to better understand and, potentially, to improve existing phase recovery algorithms.
A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum p jet 1(2) t > 11(8) GeV in the central range of pseudo-rapidity −0.9 < η jet 1(2) < 1.3. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable x obs γ . Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.
The idea of a finite collection of closed sets having "linearly regular intersection" at a point is crucial in variational analysis. This central theoretical condition also has striking algorithmic consequences: in the case of two sets, one of which satisfies a further regularity condition (convexity or smoothness for example), we prove that von Neumann's method of "alternating projections" converges locally to a point in the intersection, at a linear rate associated with a modulus of regularity. As a consequence, in the case of several arbitrary closed sets having linearly regular intersection at some point, the method of "averaged projections" converges locally at a linear rate to a point in the intersection. Inexact versions of both algorithms also converge linearly.
The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed.
We report on progress in algorithms for iterative phase retrieval. The theory of convex optimization is used to develop and to gain insight into counterparts for the nonconvex problem of phase retrieval. We propose a relaxation of averaged alternating reflectors and determine the fixed point set of the related operator in the convex case. A numerical study supports our theoretical observations and demonstrates the effectiveness of the algorithm compared to the current state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.