The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects like the optical enhancement of superconductivity 1 . Recently, nonlinear excitation 2 , 3 of certain phonons in bilayer cuprates was shown to induce superconducting-like optical properties at temperatures far above T c 4,5,6 . This effect was accompanied by the disruption of competing charge-density-wave correlations 7,8 , which explained some but not all of the experimental results. Here, we report a similar phenomenon in a very different compound. By exciting metallic K 3 C 60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. Strikingly, these sameReprints and permissions information is available online at www.nature.com/reprints.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#termsCorrespondence and request for materials should be addressed to An.C. (andrea.cavalleri@mpsd.mpg.de). Author Contributions
Nonlinear optical excitation of infrared active lattice vibrations has been shown to melt magnetic or orbital orders and to transform insulators into metals. In cuprates, this technique has been used to remove charge stripes and promote superconductivity, acting in a way opposite to static magnetic fields. Here, we show that excitation of large-amplitude apical oxygen distortions in the cuprate superconductor YBa2Cu3O6.5 promotes highly unconventional electronic properties. Below the superconducting transition temperature (Tc = 50 K) inter-bilayer coherence is transiently enhanced at the expense of intra-bilayer coupling. Strikingly, even above Tc a qualitatively similar effect is observed up to room temperature, with transient inter-bilayer coherence emerging from the incoherent ground state and similar transfer of spectral weight from high to low frequency. These observations are compatible with previous reports of an inhomogeneous normal state that retains important properties of a superconductor, in which light may be melting competing orders or dynamically synchronizing the interlayer phase. The transient redistribution of coherence discussed here could lead to new strategies to enhance superconductivity in steady state.
We report on a photoinduced transient state of YBa 2 Cu 2 O 6+δ in which transport perpendicular to the Cu-O planes becomes highly coherent. This effect is achieved by excitation with mid-infrared optical pulses, tuned to the resonant frequency of apical oxygen vibrations, which modulate both lattice and electronic properties. Below the superconducting transition temperature T c , the equilibrium signatures of superconducting interlayer coupling are enhanced. Most strikingly, the optical excitation induces a new reflectivity edge at higher frequency than the equilibrium Josephson plasma resonance, with a concomitant enhancement of the low-frequency imaginary conductivity σ 2 (ω). Above T c , the incoherent equilibrium conductivity becomes highly coherent, with the appearance of a reflectivity edge and a positive σ 2 (ω) that increases with decreasing frequency. These features are observed up to room temperature in YBa 2 Cu 2 O 6.45 and YBa 2 Cu 2 O 6.5. The data above T c can be fitted by hypothesizing that the light establishes a transient superconducting state over only a fraction of the solid, with a lifetime of a few picoseconds. Non-superconducting transport could also explain these observations, although one would have to assume transient carrier mobilities near 10 4 cm 2 /V sec at 100 K, with a density of charge carriers similar to the below-T c superfluid density. Our results are indicative of highly unconventional nonequilibrium physics and open new prospects for optical control of complex solids.
Strong optical pulses at mid-infrared and terahertz frequencies have recently emerged as a powerful tool to manipulate and control the solid state and especially complex condensed matter systems with strongly correlated electrons. The recent developments in high-power sources in the 0.1-30 THz frequency range, both from table-top laser systems and Free-Electron Lasers, has provided access to excitations of molecules and solids, which can be stimulated at their resonance frequencies. Amongst these, we discuss free electrons in metals, superconducting gaps and Josephson plasmons in layered superconductors, vibrational modes of the crystal lattice (phonons), as well as magnetic excitations. This Review provides an overview and illustrative examples of how intense THz transients can be used to resonantly control matter, with particular focus on strongly correlated electron systems and high-temperature superconductors.
V 2 O 3 is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal-to-insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic insulator. This or related MITs have a high technological potential, among others, for intelligent windows and field effect transistors. However the spatial scale on which such transitions develop is not known in spite of their importance for research and applications. Here we unveil for the first time the MIT in Cr-doped V 2 O 3 with submicron lateral resolution: with decreasing temperature, microscopic domains become metallic and coexist with an insulating background. This explains why the associated PM phase is actually a poor metal. The phase separation can be associated with a thermodynamic instability near the transition. This instability is reduced by pressure, that promotes a genuine Mott transition to an eventually homogeneous metallic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.