The impact of dopant concentration on the current densities of In0.53Ga0.47As/GaAs0.5Sb0.5 heterojunction Esaki tunnel diodes is investigated. Increased doping density results in increased peak and Zener current densities. Two different structures were fabricated demonstrating peak current densities of 92 kA/cm2 and 572 kA/cm2, Zener current densities of 994 kA/cm2 and 5.1 MA/cm2 at a −0.5 V bias, and peak-to-valley current ratios of 6.0 and 5.4, respectively. The peak current scaled linearly with area down to a 70 nm diameter. The peak current densities were benchmarked against Esaki diodes from other material systems based on doping density and tunnel barrier height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.