ABSTRACTmln this paper, an optimized digital speckle correlation algorithm, named big-window correlation, is proposed to iterate strain directly. Verified by some experiments, the sensitivity and accuracy of the displacement gradient measurement with this method can be improved greatly. Finally, this method was applied to the measurement of the compression strain for polyurethane foam plastics materials. Then the material properties, such as the module of elasticity and the Poisson ratio, with different mass densities were obtained.
ABSTRACT-In this study, digital image correlation (DIC) was adopted to examine the mechanical behavior of arterial tissue from bovine aorta. Rectangular sections comprised of the intimal and medial layers were excised from the descending aorta and loaded in displacement control uniaxial tension up to 40 percent elongation. Specimens of silicon rubber sheet were also prepared and served as a benchmark material in the application of DIC for the evaluation of large strains; the elastomer was loaded to 50 percent elongation. The arterial specimens exhibited a non-linear hyperelastic stress-strain response and the stiffness increased with percent elongation. Using a bilinear model to describe the uniaxial behavior, the average minor and major elastic modulii were 192±8 KPa and 912±40 KPa, respectively. Poisson's ratio of the arterial sections increased with the magnitude of axial strain; the average Poisson's ratio was 0.17±0.02. Although the correlation coefficient obtained from image correlation decreased with the percent elongation, a correlation coefficient greater than 0.8 was achieved for the tissue experiments and exceeded that obtained in the evaluation of the elastomer. Based on results from this study, DIC may serve as a valuable method for the determination of mechanical properties of arteries and other soft tissues.
ABSTRACT-In this paper, the fatigue and fracture properties of bovine dentin are evaluated using in vitro experimental analyses. Double cantilever beam (DCB) specimens were prepared from bovine maxillary molars and subjected to zeroto-tension cyclic loads. The fatigue crack growth rate was evaluated as a function of the dentin tubule orientation using the Paris law. Wedge-loaded DCB specimens were also prepared and subjected to monotonic opening loads. Moiré interferometry was used to acquire the in-plane displacement field during stable crack growth, and the instantaneous wedge load and crack length were acquired to evaluate the crack growth resistance and crack tip opening displacement (CTOD) with crack extension. The rate of fatigue crack growth was generally larger for crack propagation occurring perpendicular to the dentin tubules. The Moiré fringe fields documented during monotonic crack growth exhibited non-linear deformation occurring within a confined region adjacent to the crack tip. Both the wedge load and CTOD response provided evidence that a fracture process zone contributes to energy dissipation during crack extension and that dentin exhibits a rising R-curve behavior. Results from this preliminary investigation are being used as a guide for an evaluation of the fatigue and fracture properties of human dentin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.