Highlights► Outlined the need of novel strategies for cancer therapies that can counteract problems arising particularly in chemotherapy due to resistance to current drugs and their low specificity. ► Elaborated the differences in membrane composition and properties between cancer and non-cancer cells, the basis for the use of anticancer peptides derived from host defense peptides as new weapons against cancer. ► Described the current knowledge on the mode of action of these peptides and the status of in vivo studies. ► Summarized the challenges and perspectives for the development of host defense peptides as novel anticancer agents.
Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH 2 . A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. mechanism of action | respiratory chain | hypoosmotic stress response | metallocenes
This study was performed in the aim to identify potential targets for the development of novel therapy to treat cancer with poor outcome or treatment efficacy. We show that the negatively charged phospholipid phosphatidylserine (PS) is exposed in the outer leaflet of their plasma membrane not only in tumor cell lines, but also in metastases and primary cultures thereof, which contrasts with a lack of PS exposure by differentiated non-tumorigenic counterparts. Studied tumor cell lines were derived from non-tumorigenic and malignant melanomas, prostate- and renal cancer, glioblastoma and a rhabdomyosarcoma. Importantly, also metastases of melanoma expose PS and there is a correlation between malignancy of melanoma cell lines from different stages of tumor progression and PS exposure. The PS exposure we found was neither of apoptotic nor of experimental artificial origin. Finally potentially malignant and non-malignant cells could be differentiated by sorting of a primary cell culture derived from a glioblastoma based on PS exposure, which has so far not been possible within one culture due to lack of a specific marker. Our data provide clear evidence that PS could serve as uniform marker of tumor cells and metastases as well as a target for novel therapeutic approaches based on e.g. PS-specific host defense derived peptides.
In the yeast Saccharomyces cerevisiae, two acyl-CoA:sterol acyltransferases (ASATs) that catalyze the synthesis of steryl esters have been identified, namely Are2p (Sat1p) and Are1p (Sat2p). Deletion of either ARE1 or ARE2 has no effect on cell viability, and are1are2 double mutants grow in a similar manner to wild-type despite the complete lack of cellular ASAT activity and steryl ester formation Here we show that both Are2p and Are1p reside in the endoplasmic reticulum as demonstrated by measuring ASAT activity in subcellular fractions of are1 and are2 deletion strains. This localization was confirmed by fluorescence microscopy using hybrid proteins of Are2p and Are1p fused to green fluorescent protein (GFP). Lipid analysis of are1 and are2 deletion strains revealed that Are2p and Are1p utilize sterol substrates in vivo with different efficiency; Are2p has a significant preference for ergosterol as a substrate, whereas Are1p esterifies sterol precursors, mainly lanosterol, as well as ergosterol. The specificity towards fatty acids is similar for both isoenzymes. The lack of steryl esters in are1are2 mutant cells is largely compensated by an increased level of free sterols. Nevertheless, terbinafine, an inhibitor of ergosterol biosynthesis, inhibits growth of are1are2 cells more efficiently than growth of wild-type. In a growth competition experiment are1are2 cells grow more slowly than wild-type after several rounds of cultivation, suggesting that Are1p and Are2p or steryl esters, the product formed by these two enzymes, are more important in the natural environment than under laboratory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.