Object detection is essential to the interpretation of optical remote sensing images and can serve as a foundation for research into additional visual tasks that utilize remote sensing. However, the object detection network currently employed in optical remote sensing images underutilizes the output of the feature pyramid, so there remains potential for an improved detection. At present, a suitable balance between the detection efficiency and detection effect is difficult to attain. This paper proposes an enhanced YOLOv5 algorithm for object detection in high-resolution optical remote sensing images, utilizing multiple layers of the feature pyramid, a multi-detection-head strategy, and a hybrid attention module to improve the effect of object-detection networks for use with optical remote sensing images. According to the SIMD dataset, the mAP of the proposed method was 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving an improved balance between the detection effect and speed.
Magnetic rings are widely used in automotive, home appliances, and consumer electronics. Due to the materials used, processing techniques, and other factors, there will be top cracks, internal cracks, adhesion, and other defects on individual magnetic rings during the manufacturing process. To find such defects, the most sophisticated YOLOv5 target identification algorithm is frequently utilized. However, it has problems such as high computation, sluggish detection, and a large model size. This work suggests an enhanced lightweight YOLOv5 (MR-YOLO) approach for the identification of magnetic ring surface defects to address these issues. To decrease the floating-point operation (FLOP) in the feature channel fusion process and enhance the performance of feature expression, the YOLOv5 neck network was added to the Mobilenetv3 module. To improve the robustness of the algorithm, a Mosaic data enhancement technique was applied. Moreover, in order to increase the network’s interest in minor defects, the SE attention module is inserted into the backbone network to replace the SPPF module with substantially more calculations. Finally, to further increase the new network’s accuracy and training speed, we substituted the original CIoU-Ioss for SIoU-Loss. According to the test, the FLOP and Params of the modified network model decreased by 59.4% and 47.9%, respectively; the reasoning speed increased by 16.6%, the model’s size decreased by 48.1%, and the mAP only lost by 0.3%. The effectiveness and superiority of this method are proved by an analysis and comparison of examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.