The development of large-scale facial identification systems that provide privacy protection of the enrolled subjects represents an open challenge. In the context of privacy protection, several template protection schemes have been proposed in the past. However, these schemes appear to be unsuitable for indexing (workload reduction) in biometric identification systems. More precisely, they have been utilised in identification systems performing exhaustive searches, thereby leading to degradations of the computational efficiency. In this work, we propose a privacypreserving face identification system which utilises a Product Quantisation-based hash look-up table for indexing and retrieval of protected face templates. These face templates are protected through fully homomorphic encryption schemes, thereby guaranteeing high privacy protection of the enrolled subjects. For the best configuration, the experimental evaluation carried out over closed-set and open-set settings shows the feasibility of the proposed technique for the use in large-scale facial identification systems: a workload reduction down to 0.1% of a baseline approach performing an exhaustive search is achieved together with a low pre-selection error rate of less than 1%. In terms of biometric performance, a False Negative Identification Rate (FNIR) in range of 0.0% -0.2% is obtained for practical False Positive Identification Rate (FPIR) values on the FEI and FERET face databases. In addition, our proposal shows competitive performance on unconstrained databases, e.g., the LFW face database. To the best of the authors' knowledge, this is the first work presenting a competitive privacy-preserving workload reduction scheme which performs template comparisons in the encrypted domain.
The development of large-scale identification systems that ensure the privacy protection of enrolled subjects represents a major challenge. Biometric deployments that provide interoperability and usability by including efficient multibiometric solutions are a recent requirement. In the context of privacy protection, several template protection schemes have been proposed in the past. However, these schemes seem inadequate for indexing (workload reduction) in biometric identification systems. More specifically, they have been used in identification systems that perform exhaustive searches, leading to a degradation of computational efficiency. To overcome these limitations, we propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates and is agnostic with respect to biometric characteristics and biometric template protection schemes. To this end, a multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics. Experimental results reported on publicly available databases using state-ofthe-art Deep Neural Network (DNN)-based embedding extractors show that the protected multi-biometric identification system can reduce the computational workload to approximately 57% (indexing up to three types of biometric characteristics) and 53% (indexing up to two types of biometric characteristics), while simultaneously improving the biometric performance of the baseline biometric system at the high-security thresholds. The source code of the proposed multi-biometric indexing approach together with the composed multi-biometric dataset, will be made available to the research community once the article is accepted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.