Adverse reactions after vaccination with COVID-19 mRNA vaccines are common; however, the association between adverse reactions and humoral responses is uncertain. To determine whether humoral immune responses after BNT162b2 vaccine administration were associated with local and systemic adverse reactions, we conducted a prospective observational cohort study in a single tertiary referral center. Healthcare workers who received the first dose of BNT162b2 vaccine were recruited. SARS-CoV-2 anti-spike IgG antibody titers were measured three weeks after the second dose and information about adverse reactions after vaccination was collected. Among the 887 participants, 641 (72.3%) were women. The median age was 38 (range, 22–74) years. All but one showed anti-spike IgG levels well above the cutoff, with a median level of 13,600 arbitrary units/mL. Overall, 800 (92.2%) participants reported some reactions after the first dose and 822 (96.3%) after the second dose. Significantly more participants reported systemic reactions after the second dose than after the first dose (P < .01), and 625 (73.6%) reported that reactions were stronger after the second dose. Factors positively associated with elevation of anti-spike IgG levels were history of asthma (24% higher if present, P = .01) and stronger reactions after the second dose (19% higher if experienced, P = .02). The majority of participants showed good humoral responses and reported some adverse reactions after vaccination. Anti-spike IgG levels were significantly higher if adverse reactions after the second dose were stronger than those after the first dose. These findings may help inform current and future vaccine recipients.
Critical illnesses associated with coronavirus disease 2019 (COVID-19) are attributable to a hypercoagulable status. There is limited knowledge regarding the dynamic changes in coagulation factors among COVID-19 patients on nafamostat mesylate, a potential therapeutic anticoagulant for COVID-19. First, we retrospectively conducted a cluster analysis based on clinical characteristics on admission to identify latent subgroups among fifteen patients with COVID-19 on nafamostat mesylate at the University of Tokyo Hospital, Japan, between April 6 and May 31, 2020. Next, we delineated the characteristics of all patients as well as COVID-19-patient subgroups and compared dynamic changes in coagulation factors among each subgroup. The subsequent dynamic changes in fibrinogen and D-dimer levels were presented graphically. All COVID-19 patients were classified into three subgroups: clusters A, B, and C, representing low, intermediate, and high risk of poor outcomes, respectively. All patients were alive 30 days from symptom onset. No patient in cluster A required mechanical ventilation; however, all patients in cluster C required mechanical ventilation, and half of them were treated with venovenous extracorporeal membrane oxygenation. All patients in cluster A maintained low D-dimer levels, but some critical patients in clusters B and C showed dynamic changes in fibrinogen and D-dimer levels. Although the potential of nafamostat mesylate needs to be evaluated in randomized clinical trials, admission characteristics of patients with COVID-19 could predict subsequent coagulopathy. Keywords COVID-19 • Anticoagulant • D-dimer • Fibrinogen • Nafamostat mesylate Highlights • All patients with COVID-19 treated on nafamostat mesylate were alive at 30 days from symptom onset. • Using cluster analysis based on clinical characteristics on admission, we identified three subgroups among COVID-19 patients with different clinical presentations of subsequent coagulopathy. • Clinical characteristics on admission are beneficial in predicting subsequent coagulopathy and consider individualized approaches for thromboembolism. • Since COVID-19-associated coagulopathy resembles DIC, a careful evaluation of dynamic changes in coagulopathy, as reflected by fibrinogen and D-dimer levels, is essential.
To better understand the immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with COVID-19, it is important to investigate the kinetics of the antibody responses and their associations with the clinical course in different populations, since there seem to be considerable differences between Western and Asian populations in the clinical features and spread of COVID-19. In this study, we serially measured the serum titers of IgM, IgG and IgA antibodies generated against the nucleocapsid protein (NCP), S1 subunit of the spike protein (S1), and receptor-binding domain in the S1 subunit (RBD) of SARS-CoV-2 in Japanese individuals with COVID-19. Among the IgM, IgG, and IgA antibodies, IgA antibodies against all of the aforementioned viral proteins were the first to appear after the infection, and IgG and/or IgA seroconversion often preceded IgM seroconversion. In regard to the timeline of the antibody responses to the different viral proteins (NCP, S1 and RBD), IgA against NCP appeared than IgA against S1 or RBD, while IgM and IgG against S1 appeared earlier than IgM/IgG against NCP or RBD. The IgG responses to all three viral proteins and responses of all three antibody classes to S1 and RBD were sustained for longer durations than the IgA/IgM responses to all three viral proteins and responses of all three antibody classes to NCP, respectively. The seroconversion of IgA against NCP occurred later and less frequently in patients with mild COVID-19. These results suggest possible differences in the antibody responses to SARS-CoV-2 antigens between the Japanese and Western populations.
Background A heterogeneous clinical phenotype is a characteristic of coronavirus disease 2019 (COVID‐19). Therefore, investigating biomarkers associated with disease severity is important for understanding the mechanisms responsible for this heterogeneity and for developing novel agents to prevent critical conditions. This study aimed to elucidate the modulations of sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties. Methods We measured the serum sphingolipid and glycerophospholipid levels in a total of 887 samples from 215 COVID‐19 subjects, plus 115 control subjects without infectious diseases and 109 subjects with infectious diseases other than COVID‐19. Results We observed the dynamic modulations of sphingolipids and glycerophospholipids in the serum of COVID‐19 subjects, depending on the time course and severity. The elevation of C16:0 ceramide and lysophosphatidylinositol and decreases in C18:1 ceramide, dihydrosphingosine, lysophosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol were specific to COVID‐19. Regarding the association with maximum severity, phosphatidylinositol and phosphatidylcholine species with long unsaturated acyl chains were negatively associated, while lysophosphatidylethanolamine and phosphatidylethanolamine were positively associated with maximum severity during the early phase. Lysophosphatidylcholine and phosphatidylcholine had strong negative correlations with CRP, while phosphatidylethanolamine had strong positive ones. C16:0 ceramide, lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine species with long unsaturated acyl chains had negative correlations with D‐dimer, while phosphatidylethanolamine species with short acyl chains and phosphatidylinositol had positive ones. Several species of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin might serve as better biomarkers for predicting severe COVID‐19 during the early phase than CRP and D‐dimer. Compared with the lipid modulations seen in mice treated with lipopolysaccharide, tissue factor, or histone, the lipid modulations observed in severe COVID‐19 were most akin to those in mice administered lipopolysaccharide. Conclusion A better understanding of the disturbances in sphingolipids and glycerophospholipids observed in this study will prompt further investigation to develop laboratory testing for predicting maximum severity and/or novel agents to suppress the aggravation of COVID‐19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.