Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic β-cells, leading to the destruction of insulitis-related islet β-cells. Islet β-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of β-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of β-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet β-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet β-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.