Lempel-Ziv complexity (LZ) and derived LZ algorithms have been extensively used to solve information theoretic problems such as coding and lossless data compression. In recent years, LZ has been widely used in biomedical applications to estimate the complexity of discrete-time signals. Despite its popularity as a complexity measure for biosignal analysis, the question of LZ interpretability and its relationship to other signal parameters and to other metrics has not been previously addressed. We have carried out an investigation aimed at gaining a better understanding of the LZ complexity itself, especially regarding its interpretability as a biomedical signal analysis technique. Our results indicate that LZ is particularly useful as a scalar metric to estimate the bandwidth of random processes and the harmonic variability in quasi-periodic signals.
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Although a definite diagnosis is only possible by necropsy, a differential diagnosis with other types of dementia and with major depression should be attempted. The aim of this study was to analyse the EEG background activity of AD patients to test the hypothesis that the regularity of the AD patients' EEG is higher than that of age-matched controls. We recorded the EEG from 19 scalp electrodes in 11 AD patients and 11 age-matched controls. Two different methods were used to estimate the regularity of the EEG background activity: Spectral entropy (SpecEn) and Sample entropy (SampEn). We did not find significant differences between AD patients and control subjects' EEGs with SpecEn. On the other hand, AD patients had significantly lower SampEn values than control subjects (p < 0.01) at electrodes P3, P4, O1 and O2. Our results show an increase of EEG regularity in AD patients. These findings suggest that non-linear analysis of the EEG with SampEn could yield essential information and may contribute to increase the insight into brain dysfunction in AD in ways which are not possible with more classical and conventional statistical methods.
Neural network-based automated analyses of nSp recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.
This study focuses on the analysis of blood oxygen saturation (SaO(2)) from nocturnal pulse oximetry (NPO) to help in the diagnosis of the obstructive sleep apnea (OSA) syndrome. A population of 148 patients suspected of suffering from OSA syndrome was studied. A wide set of 16 features was used to characterize changes in the SaO(2) profile during the night. Our feature set included common statistics in the time and frequency domains, conventional spectral characteristics from the power spectral density (PSD) function, and nonlinear features. We performed feature selection by means of a step-forward logistic regression (LR) approach with leave-one-out cross-validation. Second- and fourth-order statistical moments in the time domain (M2t and M4t), the relative power in the 0.014-0.033 Hz frequency band ( P(R)), and the Lempel-Ziv complexity (LZC) were automatically selected. 92.0% sensitivity, 85.4% specificity, and 89.7% accuracy were obtained. The optimum feature set significantly improved the diagnostic ability of each feature individually. Furthermore, our results outperformed classic oximetric indexes commonly used by physicians. We conclude that simultaneous analysis in the time and frequency domains by means of statistical moments, spectral and nonlinear features could provide complementary information from NPO to improve OSA diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.