Thermographic flow visualization enables a noninvasive detection of the laminar–turbulent flow transition and allows a measurement of the impact of surface erosion and contamination due to insects, rain, dust, or hail by quantifying the amount of laminar flow reduction. The state-of-the-art image processing is designed to localize the natural flow transition as occurring on an undisturbed blade surface by use of a one-dimensional gradient evaluation. However, the occurrence of premature flow transitions leads to a high measurement uncertainty of the localized transition line or to a completely missed flow transition detection. For this reason, regions with turbulent flow are incorrectly assigned to the laminar flow region, which leads to a systematic deviation in the subsequent quantification of the spatial distribution of the boundary layer flow regimes. Therefore, a novel image processing method for the localization of the laminar–turbulent flow transition is introduced, which provides a reduced measurement uncertainty for sections with premature flow transitions. By the use of a two-dimensional image evaluation, local maximal temperature gradients are identified in order to locate the flow transition with a reduced uncertainty compared to the state-of-the-art method. The transition position can be used to quantify the reduction of the laminar flow regime surface area due to occurrences of premature flow transitions in order to measure the influence of surface contamination on the boundary layer flow. The image processing is applied to the thermographic measurement on a wind turbine of the type GE 1.5 sl in operation. In 11 blade segments with occurring premature flow transitions and a high enough contrast of the developed turbulence wedge, the introduced evaluation was able to locate the flow transition line correctly. The laminar flow reduction based on the evaluated flow transition position located with a significantly reduced systematic deviation amounts to 22% for the given measurement and can be used to estimate the reduction of the aerodynamic lift. Therefore, the image processing method introduced allows a more accurate estimation of the effects of real environmental conditions on the efficiency of wind turbines in operation.
Thermographic flow visualization is a contactless, non-invasive technique to visualize the boundary layer flow on wind turbine rotor blades, to assess the aerodynamic condition and consequently the efficiency of the entire wind turbine. In applications on wind turbines in operation, the distinguishability between the laminar and turbulent flow regime cannot be easily increased artificially and solely depends on the energy input from the sun. State-of-the-art image processing methods are able to increase the contrast slightly but are not able to reduce systematic gradients in the image or need excessive a priori knowledge. In order to cope with a low-contrast measurement condition and to increase the distinguishability between the flow regimes, an enhanced image processing by means of the feature extraction method, principal component analysis, is introduced. The image processing is applied to an image series of thermographic flow visualizations of a steady flow situation in a wind tunnel experiment on a cylinder and DU96W180 airfoil measurement object without artificially increasing the thermal contrast between the flow regimes. The resulting feature images, based on the temporal temperature fluctuations in the images, are evaluated with regard to the global distinguishability between the laminar and turbulent flow regime as well as the achievable measurement error of an automatic localization of the local flow transition between the flow regimes. By applying the principal component analysis, systematic temperature gradients within the flow regimes as well as image artefacts such as reflections are reduced, leading to an increased contrast-to-noise ratio by a factor of 7.5. Additionally, the gradient between the laminar and turbulent flow regime is increased, leading to a minimal measurement error of the laminar-turbulent transition localization. The systematic error was reduced by 4% and the random error by 5.3% of the chord length. As a result, the principal component analysis is proven to be a valuable complementary tool to the classical image processing method in flow visualizations. After noise-reducing methods such as the temporal averaging and subsequent assessment of the spatial expansion of the boundary layer flow surface, the PCA is able to increase the laminar-turbulent flow regime distinguishability and reduce the systematic and random error of the flow transition localization in applications where no artificial increase in the contrast is possible. The enhancement of contrast increases the independence from the amount of solar energy input required for a flow evaluation, and the reduced errors of the flow transition localization enables a more precise assessment of the aerodynamic condition of the rotor blade.
Model-inspired signal processing approaches with an enhanced detectability of flow separation on thermographic images are presented. Flow separation causes performance loss, structural loads and increasing acoustic emissions on wind turbine rotor blades. However, due to the low thermal contrast between turbulent and separated flow regions, the non-invasive thermographic visualisation of flow separation is currently only possible for wind tunnel measurements, which are characterised by a high thermal contrast and a small measuring distance. The state-of-the-art signal processing approaches evaluate the surface temperature fluctuation of thermographic image series. However, understanding of the signal measurement chain with a distinct consideration of the influences on the dynamic surface temperature is incomplete. Therefore, designing model-inspired signal processing approaches which provide a high interpretability and a maximum contrast is an open task. The proposed signal processing approaches evaluate the surface response selectively, by using the amplitude information of the surface temperature response to an oscillating input signal or gradient-based for a transient input signal. The approaches are applied to wind tunnel measurements on a rotor blade profile at a near thermodynamic steady state and a transient thermodynamic behaviour at Reynolds numbers that are representative for operational wind turbines. The gradient-based evaluation shows an improved contrast for the detection of flow separation, but is only applicable to profiles with transient thermodynamic behaviour. The amplitude evaluation provides a high degree of interpretability of the processed images based on flow-dependent features and enables for an unambiguous identification of flow separation by a global amplitude minimum close to the separation point. Additionally, an increased spatial resolution for surface modifications is shown, while the contrast between flow regions is significantly decreased. Hence, the proposed approaches allow for an improved identifiability of flow separation with regard to future applications on wind turbines in operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.