Heart failure remains a major health burden around the world. Despite great progress in delineation of molecular mechanisms underlying development of disease, standard therapy has not advanced at the same pace. The multifunctional signaling molecule Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) has received considerable attention over recent years for its central role in maladaptive remodeling and arrhythmias in the setting of chronic disease. However, these basic science discoveries have yet to translate into new therapies for human patients. This review addresses both the promise and barriers to developing translational therapies that target CaMKII signaling to abrogate pathologic remodeling in the setting of chronic disease. Efforts in small molecule design are discussed, as well as alternative targeting approaches that exploit novel avenues for compound delivery and/or genetic approaches to affect cardiac CaMKII signaling. These alternative strategies provide hope for overcoming some of the challenges that have limited the development of new therapies.
Background: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through canonical RNA interference (RNAi) mechanism. However, it remains unknown if endogenous miRs modulate the physiological homeostasis of the heart through noncanonical mechanisms. Methods: We focused on the predominant miR of the heart--miR1 and investigated if miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay (EMSA), in situ proximity ligation assay (PLA), RNA pull down and RNA Immunoprecipitation (RIP) assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was utilized to understand the underlying mechanism. The effect on the ex vivo heart was demonstrated through investigating arrhythmia-associated human single nucleotide-polymorphisms (hSNPs) with miR1-deficient mice. Results: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine and human cardiomyocytes. miR1 quickly and significantly suppressed I K1 at sub-pmol/L concentration, which is close to endogenous miR-expression level. Acute presence of miR1 depolarized resting membrane potential (RMP) and prolonged final repolarization of the action potential in cardiomyocytes. We identified three miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNAi seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short-QT/AF patients. We found that an arrhythmia-associated hSNP of miR1--hSNP14A/G specifically disrupts the biophysical modulation while retaining the RNAi function. Remarkably, miR1 but not hSNP14A/G relieved the hyperpolarized RMP in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo . Conclusions: Our study reveals a novel evolutionarily-conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion-channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.