Color centers in hexagonal boron nitride show stable single photon emission even at room temperature, making these systems a promising candidate for quantum information applications. Besides this remarkable property, also their interaction with longitudinal optical (LO) phonons is quite unique because they lead to dominant phonon sidebands, well separated from the zero phonon line. In this work we utilize this clear spectral separation to theoretically investigate the influence of phonon decay dynamics on time-dependent photoluminescence (PL) signals. Our simulations show, that by using tailored optical excitation schemes it is possible to create a superposition between the two LO modes, leading to a phonon quantum beat that manifests in the time-dependent PL signal.
The coupling between single-photon emitters and phonons opens many possibilities to store and transmit quantum properties. In this paper we apply the independent boson model to describe the coupling between an optically driven two-level system and a discrete phonon mode. Tailored optical driving allows not only to generate coherent phonon states, but also to generate coherent superpositions in the form of Schrödinger cat states in the phonon system. We analyze the influence of decay and dephasing of the two-level system on these phonon preparation protocols. We find that the decay transforms the coherent phonon state into a circular distribution in phase space. Although the dephasing between two exciting laser pulses leads to a reduction of the interference ability in the phonon system, the decay conserves it during the transition into the ground state. This allows to store the phonon quantum state properties in the ground state of the single-photon emitter.
The Jaynes-Cummings (JC) model represents one of the simplest ways in which single qubits can interact with single photon modes, leading to profound quantum phenomena like superpositions of light and matter states. One system, that can be described with the JC model, is a single quantum dot embedded in a micropillar cavity. In this joint experimental and theoretical study we investigate such a system using four-wave mixing (FWM) micro-spectroscopy. Special emphasis is laid on the dependence of the FWM signals on the number of photons injected into the microcavity. By comparing simulation and experiment, which are in excellent agreement with each other, we infer that up to ∼ 20 photons take part in the observed FWM dynamics. Thus we verify the validity of the JC model for the system under consideration in this non-trivial regime. We find that the inevitable coupling between the quantum dot exciton and longitudinal acoustic phonons of the host lattice influences the real time FWM dynamics and has to be taken into account for a sufficient description of the quantum dot-microcavity system. Performing additional simulations in an idealized dissipation-less regime, we observe that the FWM signal exhibits quasi-periodic dynamics, analog to the collapse and revival phenomenon of the JC model. In these simulations we also see that the FWM spectrum has a triplet structure, if a large number of photons is injected into the cavity.
Single-photon emitters in solid-state systems are important building blocks for scalable quantum technologies. Recently, quantum light emitters have been discovered in the wide-gap van der Waals insulator hBN. These color centers have attracted considerable attention due to their quantum performance at elevated temperatures and wide range of transition energies. Here, we demonstrate coherent state manipulation of a single hBN color center with ultrafast laser pulses and investigate in our joint experiment-theory study the coupling between the electronic system and phonons. We demonstrate that coherent control can not only be performed resonantly on the optical transition giving access to the decoherence but also phonon-assisted, which reveals the internal phonon quantum dynamics. In the case of optical phonons we measure their decoherence, stemming in part from their anharmonic decay. Dephasing induced by the creation of acoustic phonons manifests as a rapid decrease of the coherent control signal when traveling phonon wave packets are emitted. Furthermore, we demonstrate that the quantum superposition between a phonon-assisted process and the resonant excitation causes ultrafast oscillations of the coherent control signal. Our results pave the way for ultrafast phonon quantum state control on the nanoscale and open up a new promising perspective for hybrid quantum technologies.
We calculate the resonance fluorescence signal of a two-level system coupled to a quantized phonon mode. By treating the phonons in the independent boson model and not performing any approximations in their description, we also have access to the state evolution of the phonons. We confirm the validity of our model by simulating the limit of an initial quasi-classical coherent phonon state, which can be compared to experimentally confirmed results in the semiclassical limit. In addition, we predict the photon scattering spectra in the limit of purely quantum mechanical phonon states by approaching the phononic vacuum. Our method further allows us to simulate the impact of the light scattering process on the phonon state by calculating Wigner functions. We show that the phonon mode is brought into characteristic quantum states by the optical excitation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.