The study of general two dimensional models of gravity allows to tackle basic questions of quantum gravity, bypassing important technical complications which make the treatment in higher dimensions difficult. As the physically important examples of spherically symmetric Black Holes, together with string inspired models, belong to this class, valuable knowledge can also be gained for these systems in the quantum case. In the last decade new insights regarding the exact quantization of the geometric part of such theories have been obtained. They allow a systematic quantum field theoretical treatment, also in interactions with matter, without explicit introduction of a specific classical background geometry. The present review tries to assemble these results in a coherent manner, putting them at the same time into the perspective of the quite large literature on this subject.
We consider cosmological topologically massive gravity at the chiral point with positive sign of the Einstein-Hilbert term. We demonstrate the presence of a negative energy bulk mode that grows linearly in time. Unless there are physical reasons to discard this mode, this theory is unstable. To address this issue we prove that the mode is not pure gauge and that its negative energy is time-independent and finite. The isometry generators L 0 andL 0 have non-unitary matrix representations like in logarithmic CFT. While the new mode obeys boundary conditions that are slightly weaker than the ones by Brown and Henneaux, its fall-off behavior is compatible with spacetime being asymptotically AdS 3 . We employ holographic renormalization to show that the variational principle is well-defined. The corresponding Brown-York stress tensor is finite, traceless and conserved. Finally we address possibilities to eliminate the instability and prospects for chiral gravity.
Three-dimensional Einstein gravity with negative cosmological constant admits stationary black holes that are not necessarily spherically symmetric. We propose boundary conditions for the near horizon region of these black holes that lead to a surprisingly simple near horizon symmetry algebra consisting of two affine u(1) current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The associated charges give a specific example of "soft hair" on the horizon, as defined by Hawking, Perry and Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Banados-Teitelboim-Zanelli black holes and "black flower" generalizations. From the near horizon perspective the conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit of black hole complementarity. Another remarkable feature of our boundary conditions is that they are singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless the value of the global charges like mass or angular momentum. Finally, we address black hole microstates and generalizations to cosmological horizons.Comment: 6p
A comprehensive treatment of black hole thermodynamics in two-dimensional dilaton gravity is presented. We derive an improved action for these theories and construct the Euclidean path integral. An essentially unique boundary counterterm renders the improved action finite on-shell, and its variational properties guarantee that the path integral has a well-defined semi-classical limit. We give a detailed discussion of the canonical ensemble described by the Euclidean partition function, and examine various issues related to stability. Numerous examples are provided, including black hole backgrounds that appear in two dimensional solutions of string theory. We show that the Exact String Black Hole is one of the rare cases that admits a consistent thermodynamics without the need for an external thermal reservoir. Our approach can also be applied to certain higher-dimensional black holes, such as Schwarzschild-AdS, Reissner-Nordström, and BTZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.