Wheeled robots are widely used in many industrial fields. The wheeled robot needs to have implemented an autonomous navigation system to improve work efficiency. In this research, a map-based indoor navigation system is implemented on wheeled robot with Robotics Operating System (ROS) platform using Hector Mapping algorithm. The algorithm Multisensor Data Fusion using Extended Kalman Filter (EKF) which fuses Wheel Odometry data with IMU sensor data for localization, Field Dynamic A-Star algorithm for path planning, and ON-OFF controller for trajectory tracking. Field Dynamic A-Star algorithm is chosen because it solves general path planning algorithm's main issue that limits robot's orientation movement for every 45 o (suboptimal and subnatural path). The robot has ODROID-XU4 as controller to perform map-based indoor navigation, Arduino Mega 2560 to drive motors, RPLIDAR A2 LASER rangefinder for mapping, and VEX Integrated Encoder with Sparkfun Razor 9DoF IMU for localization. The navigation system is successfully implemented on wheeled robot with ROS platform. Robot has successfully mapped indoor environment with 0.174 meter error rate, and has successfully done localization with average error rate of 0.05m on x coordinate, 0.028m on y coordinate, and 1.506 o on orientation angle. Path planner is proved capable of generating path that is not limited every 45 o orientation. Path planner yields 62.5% success rate in generating traversable path and the robot yields 75% success rate in following the path. Robot yields average error rate of 0.046m in moving towards target's x coordinate, 0.072m in moving towards target's y coordinate, and 5.163 o in turning towards target's orientation angle.
Dalam artikel ini disajikan perancangan dan realisasi sistem pendeteksi posisi keberadaan manusia dalam ruangan menggunakan sensor webcam. Sistem ini dapat diterapkan pada robot, sehingga robot mempunyai kemampuan untuk mendeteksi posisi manusia. Untuk mengetahui ada atau tidak ada manusia digunakan deteksi gerak. Metode deteksi gerak yang digunakan adalah metode perbedaan citra terhadap dua citra berurutan dari video yang ditangkap oleh webcam. Bila terdapat perbedaan citra yang melebihi nilai tertentu, maka terdeteksi adanya gerakan dan dianggap ada manusia dalam ruangan. Posisi keberadaan manusia diperoleh dengan menggabungkan hasil deteksi gerak dengan informasi sudut/arah webcam saat terdeteksi adanya gerakan. Dari hasil pengujian diperoleh pendeteksi yang direalisasikan memiliki tingkat keberhasilan sebesar 100% dalam mendeteksi posisi keberadaan manusia untuk kondisi yang telah ditentukan, yaitu nilai Delta_piksel (banyaknya piksel yang berbeda) 500 dan delay 0,05 detik. Sistem ini dapat melakukan pendeteksian posisi objek dengan rata-rata kecepatan gerak objek sampai 0,5 m/s.
Informasi dalam bentuk multimedia digital mudah dilakukan duplikasi dan modifikasi oleh pihak-pihak yang mungkin saja tidak memiliki izin dari pemilik yang sah. Hal ini dapat menimbulkan persoalan pelanggaran hak cipta atas informasi multimedia tersebut. Salah satu cara untuk mengatasi persoalan tersebut adalah dengan digital watermarking. Dalam artikel ini dibahas mengenai teknik watermarking pada citra digital menggunakan contourlet transform (CT) yang digabung dengan discrete cosine transform (DCT) dan perhitungan noise visibility function (NVF). Watermark disisipkan pada koefisien DCT dari subband hasil transformasi contourlet level 2. Penyisipan watermark dilakukan dengan memperhitungkan nilai NVF koefisien CT dari subband yang digunakan. Untuk daerah yang bertekstur, watermark akan disisipkan lebih kuat daripada daerah yang datar. Dari hasil uji coba diperoleh bahwa citra yang telah disisipi watermark mempunyai kualitas yang baik dengan rata-rata nilai peak signal to noise ratio (PSNR) lebih besar dari 35 dB, dan watermark dapat diekstraksi kembali dengan baik dengan rata-rata nilai bit correct ratio (BCR) lebih besar dari 98%. Watermark masih tahan terhadap kompresi JPEG dengan faktor kualitas Q 9, penambahan noise Gaussian sampai 10%, cropping sampai 25%, dan scaling 75% dan 125%, tetapi tidak tahan terhadap rotasi. Information in the form of digital multimedia can easily be duplicated and modified by parties who may not have the permission of the legal owner. This can lead to issues of copyright infringement of the multimedia information. One solution to overcome this problem is digital watermarking. This article discusses watermarking technique in digital images using contourlet transform (CT) combined with discrete cosine transform (DCT) and noise visibility function (NVF) calculation. Watermark is inserted in the DCT coefficients of level 2 contourlet transform subband. Watermark insertion is done by calculating the NVF value of the CT coefficients of the subband used. For textured areas, the watermark will be inserted stronger than flat areas. From the test results, it is found that the watermarked image has good quality with an average peak signal to noise ratio (PSNR) value greater than 35 dB, and the watermark can be extracted back well with an average bit correct ratio (BCR) value greater than 98%. Watermark is still resistant to JPEG compression with a quality factor Q greater than 9, Gaussian noise addition up to 10%, cropping up to 25%, scaling 75% and 125%, but not resistant to rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.