This review describes simple and useful concepts for predicting and tuning the pK(a) values of basic amine centers, a crucial step in the optimization of physical and ADME properties of many lead structures in drug-discovery research. The article starts with a case study of tricyclic thrombin inhibitors featuring a tertiary amine center with pK(a) values that can be tuned over a wide range, from the usual value of around 10 to below 2 by (remote) neighboring functionalities commonly encountered in medicinal chemistry. Next, the changes in pK(a) of acyclic and cyclic amines upon substitution by fluorine, oxygen, nitrogen, and sulfur functionalities, as well as carbonyl and carboxyl derivatives are systematically analyzed, leading to the derivation of simple rules for pK(a) prediction. Electronic and stereoelectronic effects in cyclic amines are discussed, and the emerging computational methods for pK(a) predictions are briefly surveyed. The rules for tuning amine basicities should not only be of interest in drug-discovery research, but also to the development of new crop-protection agents, new amine ligands for organometallic complexes, and in particular, to the growing field of amine-based organocatalysis.
The synthesis of a collection of 3-substituted indole derivatives incorporating partially fluorinated n-propyl and n-butyl groups is described along with an in-depth study of the effects of various fluorination patterns on their properties, such as lipophilicity, aqueous solubility, and metabolic stability. The experimental observations confirm predictions of a marked lipophilicity decrease imparted by a vic-difluoro unit when compared to the gem-difluoro counterparts. The data involving the comparison of the two substitution patterns is expected to benefit molecular design in medicinal chemistry and, more broadly, in life as well as materials sciences.
The modulation of pharmacologically relevant properties of N-alkyl-piperidine-2-carboxamides was studied by selective introduction of 1-3 fluorine atoms into the n-propyl and n-butyl side chains of the local anesthetics ropivacaine and levobupivacaine. The basicity modulation by nearby fluorine substituents is essentially additive and exhibits an exponential attenuation as a function of topological distance between fluorine and the basic center. The intrinsic lipophilicity of the neutral piperidine derivatives displays the characteristic response noted for partially fluorinated alkyl groups attached to neutral heteroaryl systems. However, basicity decrease by nearby fluorine substituents affects lipophilicities at neutral pH, so that all partially fluorinated derivatives are of similar or higher lipophilicity than their non-fluorinated parents. Aqueous solubilities were found to correlate inversely with lipophilicity with a significant contribution from crystal packing energies, as indicated by variations in melting point temperatures. All fluorinated derivatives were found to be somewhat more readily oxidized in human liver microsomes, the rates of degradation correlating with increasing lipophilicity. Because the piperidine-2-carboxamide core is chiral, pairs with enantiomeric N-alkyl groups are diastereomeric. While little response to such stereoisomerism was observed for basicity or lipophilicity, more pronounced variations were observed for melting point temperatures and oxidative degradation.
The GlyT1 transporter has emerged as a key novel target for the treatment of schizophrenia. Herein, we report on the optimization of the 2-alkoxy-5-methylsulfonebenzoylpiperazine class of GlyT1 inhibitors to improve hERG channel selectivity and brain penetration. This effort culminated in the discovery of compound 10a (RG1678), the first potent and selective GlyT1 inhibitor to have a beneficial effect in schizophrenic patients in a phase II clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.