The reactions of bicyclic enone (BCE, 1) with cyclopentadiene (Cp, 2) and the five-membered heterocyclic compounds (FHCs) furan 3 and N-methyl pyrrole 4 for the construction of polycyclic heterocyclic compounds have been studied at the B3LYP/6-31G* level. No reaction takes place in the absence of Lewis acid (LA) catalysts as a consequence of the high activation energy associated with these reactions. Electrophilic activation of BCE 1 by formation of a complex with the BF3 LA, 1-BF3, and solvent effects favor the reactions. However, a different reactivity is manifested by Cp 2 and FHCs 3 and 4. Thus, while the reaction of 1-BF3 with Cp 2 yields the expected exo [4 + 2] cycloadduct, the reactions of these FHCs yield Michael adducts. In any case, the reactions are characterized by the nucleophilic/electrophilic interaction between the most nucleophilic centers of these dienes and the most electrophilic center of complex 1-BF3. The greater ability of FHCs 3 and 4 to stabilize positive charges opposed to Cp 2 favors a stepwise mechanism with formation of a zwitterionic intermediate. Although in most stepwise Diels-Alder reactions, the subsequent ring closure has unappreciable barriers, in these FHCs the abstraction of a proton with regeneration of the aromatic ring becomes competitive. Thermodynamic calculations suggest that the exergonic character of the formation of the Michael adducts could be the driving force for the reactions involving FHCs.
In the last years, experimental/theoretical studies have shown that graphene has a strong affinity toward nucleobases, serving as a promising nanomaterial for self-assembly, sensing, and/or sequencing of DNA/RNA constituents. Then, a complete picture of the properties of the nucleobase-graphene systems is required for its use in technological applications. This work describes a detailed quantum chemical analysis of the aromaticity of adsorbed nucleobases on graphene, comparing between aromaticity indexes based on magnetic, geometry, electron density, and electron delocalization properties of graphene-nucleobase systems. Contrary to the stated by magnetic-based aromaticity criteria (such as nucleus-independent chemical shifts), it is proved that the aromatic character of nucleobases is not increased/decreased upon binding on graphene. Therefore, magnetic aromaticity criteria are not recommended to analyze aromaticity in related systems, unless a fragmented scheme be adopted. Finally, these results are expected to expand the knowledge about the understanding of biomolecules-graphene interactions.
A low valent Pb (II) hydride complex with NacNac ligand (NacNac = [ArNC(Me)CHC (Me)NAr] − , with Ar = 2,6−iPr 2 C 6 H 3 ) is predicted to be the best catalyst for CO 2 activation compared to its Ge (II) and Sn (II) analogues, which have been experimentally reported (Jana, A., et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.