Synthetic zeolites were studied in order to investigate their ability to encapsulate and to release drugs. In particular, a zeolite X and a zeolitic product obtained from a cocrystallization of zeolite X and zeolite A were examined. These materials were characterized by chemical analyses (ICP-AES), X-ray diffraction, nitrogen adsorption isotherm, scanning electron microscopy, laser diffraction, and infrared spectroscopy. Since ketoprofen was chosen as a model drug for the formulation of controlled-release dosage forms, it was encapsulated into these two types of synthetic zeolites by a soaking procedure. Drug-loaded matrices were then characterized for entrapped drug amount and thermogravimetric behavior. In both types of activated zeolites, the total amount of ketoprofen (800 mg) was encapsulated in 2 g of matrix. By using HPLC measurements, ketoprofen release studies were done at different pH conditions so as to mimick gastrointestinal fluids. The absence of release in acid conditions and a double phased release, at two different pH values (5 and 6.8), suggest that after activation these materials offer good potential for a modified release delivery system of ketoprofen.
Novel glycosyl derivatives of dopamine and L-dopa (I-IV) are synthesized in order to overcome the problem of blood-brain barrier low permeability of dopamine and of low bioavailability of its precursor L-dopa. Esters synthesized link dopamine and L-dopa, by a succinyl linker, to C-3 position of glucose (I and II) and to C-6 of galactose (II and IV). The chemical and enzymatic stabilities of esters synthesized were evaluated in order to determine both their stability in aqueous medium and their feasibility in undergoing enzymatic cleavage by rat plasma to regenerate the original drug. Furthermore, we have shown the central effects of esters I-IV on classic dopaminergic models, such as morphine induced locomotion and reserpine-induced hypolocomotion. From the result obtained compounds I-IV appeared moderately stable in a pH 7.4 buffered solution and in rat plasma. Furthermore, pharmacological studies showed that both dopamine derivatives (I and II) were equiactive in reversing reserpine-induced hypolocomotion in rats, and both were more active than L-dopa or ester III and IV, while II and III were more potent in reducing morphine-induced locomotion than I and IV. The minimal vascular effects of these derivatives allow us to underline the possibility to use them in pathologies, such as Parkinson disease, characterised by an evident decreasing of dopamine concentration in the brain.
Although ketorolac is one of the most potent anti-inflammatory and analgesic drugs, its use has been strongly limited owing to the high incidence of adverse effects reported, particularly in the gastrointestinal tract. Using the prodrug approach, which allows the reduction of toxicological features of the parent drug without altering its pharmacological properties, we synthesized an orally administrable prodrug of ketorolac by means of its reversible conjugation to D-galactose (ketogal). In a single dose study, its pharmacokinetic profile was compared with that of ketorolac. Moreover, we found that this prodrug was able to maintain the anti-inflammatory and the analgesic activity of the drug without giving rise to gastric ulcer formation. Thus, these results indicate that ketogal is a highly effective and valid therapeutic alternative to ketorolac itself.
D-galactose is a simple and natural compound that has mainly been exploited in prodrug strategies. Galactosyl prodrugs can be considered a good approach to reach different goals in clinical drug application, especially when traditional drugs are likely to fail therapeutically owing to reasons such as the lack of site specificity, toxicity, and chemical instability. Indeed, of paramount importance is their ability to increase the selectivity of the parent compound, a phenomenon that helps to reduce the incidence of adverse effects, while preserving intact the pharmacodynamic features of the parent drug. Study results have varied according to the type of linkage between the drug and the hydroxyl group exploited. By working with these parameters, researchers have been able not only to generate selective pharmacological targeting of brain, liver, and cancerous cells, but also to improve cellular permeability as well as the pharmacokinetic profile of parent drugs. This review describes the broad spectrum of possibilities for exploiting D-galactose as a vector for prodrug design and the synthetic strategies that allow its realization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.