Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.
During the Zika epidemic in Brazil, a baby was born at term with microcephaly and arthrogryposis. The mother had Zika symptoms at 10 weeks of gestation. At 17 weeks, ultrasound showed cerebral malformation and ventriculomegaly. At 24 weeks, the amniotic fluid contained ZIKV RNA and at birth, placenta and maternal blood were also positive using RT-qPCR. At birth the baby urine contained ZIKV RNA, whereas CSF at birth and urine at 17 days did not. Seizures started at 6 days. EEG was abnormal and CT scan showed cerebral atrophy, calcifications, lissencephaly, ventriculomegaly, and cerebellar hypoplasia. Bacterial sepsis at 2 months was treated. A sudden increase in head circumference occurred at 4 months necessitating ventricle-peritoneal shunt placement. At 5 months, the infant died with sepsis due to bacterial meningitis. Neuropathological findings were as severe as some of those found in neonates who died soon after birth, including hydrocephalus, destructive lesions/calcification, gliosis, abnormal neuronal migration, dysmaturation of nerve cells, hypomyelination, loss of descending axons, and spinal motor neurons. ZIKV RNA was detected only in frozen brain tissue using RT-qPCR, but infected cells were not detected by in situ hybridization. Progressive gliosis and microgliosis in the midbrain may have contributed to aqueduct compression and subsequent hydrocephalus. The etiology of progressive disease after in utero infection is not clear and requires investigation.
Previous work showed that the thymus can be infected by RNA viruses as HIV and HTLV-1. We thus hypothesized that the thymus might also be infected by the Zika virus (ZIKV). Herein we provide compelling evidence that ZIKV targets human thymic epithelial cells (TEC) in vivo and in vitro. ZIKVinfection enhances keratinization of TEC, with a decrease in proliferation and increase in cell death. Moreover, ZIKV modulates a high amount of coding RNAs with upregulation of genes related to cell adhesion and migration, as well as non-coding genes including miRNAs, circRNAs and lncRNAs. Moreover, we observed enhanced attachment of lymphoblastic T-cells to infected TEC, as well as virus transfer to those cells. Lastly, alterations in thymuses from babies congenitally infected were seen, with the presence of viral envelope protein in TEC. Taken together, our data reveals that the thymus, particularly the thymic epithelium, is a target for the ZIKV with changes in the expression of molecules that are relevant for interactions with developing thymocytes. Zika virus (ZIKV) epidemics in 2015-2016 resulted in devastating effects, causing microcephaly, other related congenital defects at birth and neurodevelopmental delay after two years in children born from mothers infected by the virus during pregnancy 1-4. Additionally, ZIKV infection in adults correlated with a rise in the frequency of cases of Guillain-Barré syndrome 5,6. Although the knowledge on the cellular and molecular alterations caused by the ZIKV in the nervous tissue largely increased in the last few years 2,7,8 , the effects of this virus upon hematopoietic tissues are much less defined. In terms of secondary lymphoid organs, ZIKV RNA and protein have been described in lymph nodes of Rhesus monkeys in both paracortex and germinal centers 9,10. The virus was also found in macrophages, dendritic cells, and B-cells, in both spleen and axillary lymph nodes of this non-human primate. However, in the same study, the presence of ZIKV RNA in T-cells was observed only in axillary lymph nodes from one animal 10. Much less is known on the putative infection of primary lymphoid organs, and more particularly in the thymus. This central lymphoid organ is responsible for the generation of T lymphocytes under the control of the thymic microenvironment, a three-dimensional cellular network mainly composed by thymic epithelial cells-TEC 11. In this respect, it is interesting to note the thymus as a target organ for other RNA viruses, such as HIV 12 and HTLV-1 13,14. In fact, we showed that cultured human TEC can be infected by HTLV-1 and convey virus particles to lymphoblastic T cells 15,16. We thus hypothesized that the thymic epithelium might also be infected by the Zika virus. Herein we provide compelling evidence that ZIKV targets human TEC both in vivo and in vitro. Data are provided showing that ZIKV-infection enhances keratinization of TEC, with a decrease in proliferation and increase in cell death. Moreover, in vitro data revealed that the virus could modulate a high amount ...
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) member of the Flaviviridae family, which has been associated with the development of the congenital Zika syndrome (CZS). RNA viruses, such as flaviviruses, have been reported to exert a profound impact on host microRNAs (miRNAs). Cellular miRNAs modulated by ZIKV may help identify cellular pathways of relevance to pathogenesis. Here, we screened 754 human cellular miRNAs modulated by ZIKV infection (Brazilian PE strain) in a neuroblastoma cell line. Seven miRNAs (miR-99a*, miR-126*, miR-190b, miR-361-3p, miR-522-3p, miR-299-5p, and miR-1267) were downregulated during ZIKV infection, while miR-145 was upregulated. Furthermore, 11 miRNAs were exclusively expressed in ZIKV-infected (miR-148a, miR-342-5p, miR-598, and miR-708-3p) or mock cells (miR-208, miR-329, miR-432-5p, miR-488, miR-518b, miR-520g, and miR-767-5p). Furthermore, in silico analysis indicated that some central nervous system, cellular migration, and adhesion function-related biological processes were overrepresented in the list of target genes of the miRNAs regulated in ZIKV-infected cells, especially for miR-145 and miR-148a. The induction of miR-145 and miR-148a was confirmed in postmortem brain samples from stillborn with severe CZS. Finally, we determined the expression regulation of microcephaly related genes through RNA interference pathway caused by ZIKV directly on neuron cells.
BackgroundZika virus (ZIKV) infection gained public health concern after the 2015 outbreak in Brazil, when microcephaly rates increased in babies born from infected mothers. It was demonstrated that ZIKV causes a congenital Zika virus syndrome, including various alterations in the development of the central nervous system. Although the infection of cells from the nervous system has been well documented, less is known in respect of ZIKV ability to infect immune cells. Herein, we investigated if peripheral blood mononuclear cells (PBMCs), freshly-isolated from healthy donors, could be infected by ZIKV.MethodsPBMCs from healthy donors were isolated and cultured in medium with ZIKV strain Rio-U1 (MOI = 0.1). Infection was analyzed by RT-qPCR and flow cytometry.ResultsWe detected the ZIKV RNA in PBMCs from all donors by RT-qPCR analysis. The detection of viral antigens by flow cytometry revealed that PBMC from more than 50% the donors were infected by ZIKV, with CD3+CD4+ T cells, CD3−CD19+ B cells and CD3+CD8+ T cells being, respectively, the most frequently infected subpopulations, followed by CD14+ monocytes. Additionally, we observed high variability in PBMC infection rates among different donors, either by numbers or type infected cells.ConclusionsThese findings raise the hypothesis that PBMCs can act as a reservoir of the virus, which may facilitate viral dissemination to different organs, including immune-privileged sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.