BackgroundAs several new tibial osteotomy plates recently appeared on the market, the aim of the present study was to compare mechanical static and fatigue strength of three newly designed plates with gold standard plates for the treatment of medial knee joint osteoarthritis.MethodsSixteen fourth-generation tibial bone composites underwent a medial open-wedge high tibial osteotomy (HTO) according to standard techniques, using five TomoFix standard plates, five PEEKPower plates and six iBalance implants. Static compression load to failure and load-controlled cyclic fatigue failure tests were performed. Forces, horizontal and vertical displacements were measured; rotational permanent plastic deformations, maximal displacement ranges in the hysteresis loops of the cyclic loading responses and dynamic stiffness were determined.ResultsStatic compression load to failure tests revealed that all plates showed sufficient stability up to 2400 N without any signs of opposite cortex fracture, which occurred above this load in all constructs at different load levels. During the fatigue failure tests, screw breakage in the iBalance group and opposite cortex fractures in all constructs occurred only under physiological loading conditions (<2400 N). The highest fatigue strength in terms of maximal load and number of cycles performed prior to failure was observed for the ContourLock group followed by the iBalance implants, the TomoFix standard (std) and small stature (sm) plates. The PEEKPower group showed the lowest fatigue strength.ConclusionsAll plates showed sufficient stability under static loading. Compared to the TomoFix and the PEEKPower plates, the ContourLock plate and iBalance implant showed a higher mechanical fatigue strength during cyclic fatigue testing. These data suggest that both mechanical static and fatigue strength increase with a wider proximal T-shaped plate design together with diverging proximal screws as used in the ContourLock plate or a closed-wedge construction as in the iBalance design. Mechanical strength of the bone-implant constructs decreases with a narrow T-shaped proximal end design and converging proximal screws (TomoFix) or a short vertical plate design (PEEKPower Plate). Whenever high mechanical strength is required, a ContourLock or iBalance plate should be selected.
This article is the second part of a two-part study, which explored the extent to which Building Information Modelling (BIM) is used for End-of-Lifecycle (EoL) scenario selection to minimise the Construction and Demolition Waste (CDW). The conventional literature review presented here is based on the conceptual landscape that was obtained from the bibliometric and scientometric analysis in the first part of the study. Seven main academic research directions concerning the BIM-based EoL domain were found, including social and cultural factors, BIM-based Design for Deconstruction (DfD), BIM-based deconstruction, BIM-based EoL within LCA, BIM-aided waste management, Material and Component Banks (M/C Banks), off-site construction, interoperability and Industry Foundation Classes (IFC). The analysis highlights research gaps in the path of raw materials to reusable materials, i.e., from the deconstruction to M/C banks to DfD-based designs and then again to deconstruction. BIM-based EoL is suffering from a lack of a global framework. The existing solutions are based on local waste management policies and case-specific sustainability criteria selection. Another drawback of these ad hoc but well-developed BIM-based EoL prototypes is their use of specific proprietary BIM tools to support their framework. This disconnection between BIM tools and EoL tools is reportedly hindering the BIM-based EoL, while no IFC classes support the EoL phase information exchange.
In this paper, we present a new multi-physics computational framework that enables us to capture and investigate complex fracture behavior in cement-based materials at early-age. The present model consists of coupling the most important chemothermo-mechanical processes to describe temperature evolution, variation of hydration degree, and mechanical behavior. The changes of material properties are expressed as a function of the hydration degree, to capture the age effects. Fracture analysis of these processes is then accommodated by a versatile phase field model in the framework of smeared crack models, addressing the influence of cracks on hydration and thermal transfer. We additionally describe a stable and robust numerical algorithm, which aims to solve coupled problems by using a staggered scheme. The developed approach is applied to study the fracture phenomena for both homogeneous and heterogeneous concrete structures. Especially, in the second case, all microstructural heterogeneities of sand and cement matrix are explicitly accounted. Nucleation, initiation, and propagation of complex crack network are simulated in an efficient way demonstrating the potential of the proposed approach to assess the early-age defects in concrete structures and materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.