Based on the results of artificial samples generated in the minority class and through the label regulation of the neighbor samples of the majority class, the precision of the classification prediction for imbalanced learning has clearly been enhanced. This article presents a unified solution combining learning factors to improve the learning performance. The proposed method solves this imbalance through a feature selection incorporating the generation of artificial samples and label regulation. A probabilistic representation is used for all aspects of learning: class, sample, and feature. A Bayesian inference is applied to the learning model to interpret the imbalance occurring in the training data and to describe solutions for recovering the balance. We show that the generation of artificial samples is sample based approach and label regulation is class based approach. We discovered that feature selection achieves surprisingly good results when combined with a sample- or class-based solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.