Summary1. Fuels in the groundcover of frequently burned south-eastern pine savannas include shed leaves of trees. Flammable needles of longleaf pine (Pinus palustris) potentially increase maximum fire temperatures and durations of heating, negatively affecting other trees within the groundcover. Less flammable leaves that accumulate around the bases of understorey stems of hardwood trees such as mockernut hickories (Carya alba) in the fall potentially depress maximum fire temperatures and durations of heating, enhancing post-fire recovery. 2. We experimentally manipulated amounts of pine and hickory leaves beneath understorey hickory stems in a pine savanna, measured temperatures during prescribed fires and assessed combustion of fuels and survival and regrowth of hickory stems. 3. Pine needles increased fire temperatures and durations of heating relative to herbaceous fuels and increased combustion of hickory leaves. Hickory leaves, however, neither increased nor decreased fire characteristics relative to herbaceous fuels. 4. All hickories survived fire by resprouting. When pine needles were absent, most hickories resprouted from buds located above-ground along the stem at heights inversely related to temperature increase. In contrast, resprouting occurred only from underground root crowns when pine needles were present. Such differences in locations of resprouts influenced sizes of stems at the end of the growing season. 5. Synthesis. Groundcover fuels containing flammable leaves shed by pyrogenic species of savanna trees affect local fire characteristics and resprouting of non-pyrogenic understorey trees. Thus, local variation in flammable fuels produced by pyrogenic species can engineer landscape dynamics of other trees in savannas.
Natural fires ignited by lightning strikes following droughts frequently are posited as the ecological mechanism maintaining discontinuous tree cover and grass‐dominated ground layers in savannas. Such fires, however, may not reliably maintain humid savannas. We propose that savanna trees producing pyrogenic shed leaves might engineer fire characteristics, affecting ground‐layer plants in ways that maintain humid savannas. We explored our hypothesis in a high‐rainfall, frequently burned pine savanna in which the dominant tree, longleaf pine (Pinus palustris), produces resinous needles that become highly flammable when shed and dried. We postulated that pyrogenic needles should have much greater influence on fire characteristics at ground level, and hence post‐fire responses of dominant shrubs and grasses, than other abundant fine fuels (shed oak leaves and grass culms). We further reasoned that these effects should increase with amounts of needles. We managed site conditions that affect fuels (time since fire, dominant vegetation), manipulated amounts of needles in ground‐layer plots, prescribed burned the plots, and measured fire characteristics at ground level. We also measured characteristics of ground‐layer oaks and grasses before, then 2 and 8 months after fires. We tested our hypotheses regarding effects of pyrogenic pine fuels on fire characteristics and vegetation regrowth and explored direct and indirect effects of fuels on fire characteristics and vegetation using a structural equation model. Pine needles influenced fire characteristics, elevating maximum temperature increases, durations of heating above 60°C, and fine fuel consumption considerably above measurements when fuels only included other savanna plants. Presence of pine needles depressed post‐fire numbers of oak stems and grass culms, especially in the interior of grass genets, as well as post‐fire flowering of grasses. The structural equation model indicated strong direct and indirect pathways from pine needles to post‐fire responses of oaks and grasses. The experimental field tests of hypotheses, bolstered by structural equation modeling, indicate pyrogenic fine fuels modify characteristics of prescribed fires at ground level, negatively affecting dominant ground‐layer oaks and grasses. Frequent fires fueled by pyrogenic needles should maintain humid savannas and generate spatial pyrodiversity that affects composition and dynamics of pine savanna ground‐layer vegetation.
Wrack (vegetation debris) deposited by storm surges of major hurricanes along the northern Gulf of Mexico produces depressant effects that vary from partial to complete mortality of groundcover vegetation in coastal savannas. As wrack decomposes or is relocated by a subsequent hurricane, patches are opened to colonization. We postulated that patterns of wrack deposition and removal, coupled with differential responses by savanna plant species should produce alternate states of groundcover vegetation. We explored extreme effects of wrack deposited by Hurricane Katrina (2005) in savannas dominated by slash pine Pinus elliottii and cordgrass Spartina patens and located above mean high tide at the Grand Bay National Estuarine Research Reserve, Mississippi, USA. In 2008, we established plots in adjacent areas with and without wrack deposits. Almost no groundcover plant species occurred in wrack deposits compared to adjacent groundcover without wrack. We simulated redistribution of wrack during a new storm surge by removing wrack from replicated plots and depositing it in plots without wrack, recording plant species in treatment and control plots before, then one month and one year after manipulations. One year later, about half the species present before wrack addition (especially dominant graminoids) grew back through redistributed wrack, suggesting that some species were resistant to burial of limited amounts of wrack. Wrack removal resulted in germination and establishment of numerous herbaceous plant species not in undisturbed groundcover, doubling total aboveground numbers of species in the pine savanna and shifting groundcover communities to alternate states not present prior to Katrina. Removal of wrack opens space colonized by resilient species, including those transported in wrack and those surviving intervals between disturbances belowground. Wrack dynamics (deposition and removal) generated alternate states that resulted from resistance‐ and resilience‐driven changes in different patches of groundcover in coastal savannas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.