In this era of genomics, transcriptomics, and proteomics, metabolomics is emerging as an important component of the omics evolution ( 1 ). Of the four kinds of biological molecules that comprise the human body, i.e., nucleic acids, amino acids (proteins), carbohydrates (sugars), and lipids (fats), lipids stand out among the various cellular metabolites in the sheer number of distinct molecular species. Using state-of-the-art lipidomics approaches made possible by newly developed instrumentation, protocols, and bioinformatics tools ( 2 ), the LIPID MAPS Consortium Abstract The focus of the present study was to defi ne the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a fi rst step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules. -Quehenberger, O., A.
A number of clinical isolates of Pseudomonas aeruginosa are cytotoxic to mammalian cells due to the action of the 74-kDa protein ExoU, which is secreted into host cells by the type III secretion system and whose function is unknown. Here we report that the swift and profound cytotoxicity induced by purified ExoU or by an ExoUexpressing strain of P. aeruginosa is blocked by various inhibitors of cytosolic (cPLA 2 ) and Ca 2؉ -independent (iPLA 2 ) phospholipase A 2 enzymes. In contrast, no cytoprotection is offered by inhibitors of secreted phospholipase A 2 enzymes or by a number of inhibitors of signal transduction pathways. This suggests that phospholipase A 2 inhibitors may represent a novel mode of treatment for acute P. aeruginosa infections. We find that 300 -600 molecules of ExoU/cell are required to achieve half-maximal cell killing and that ExoU localizes to the host cell plasma membrane in punctate fashion. We also show that ExoU interacts in vitro with an inhibitor of cPLA 2 and iPLA 2 enzymes and contains a putative serine-aspartate catalytic dyad homologous to those found in cPLA 2 and iPLA 2 enzymes. Mutation of either the serine or the aspartate renders ExoU non-cytotoxic. Although no phospholipase or esterase activity is detected in vitro, significant phospholipase activity is detected in vivo, suggesting that ExoU requires one or more host cell factors for activation as a membrane-lytic and cytotoxic phospholipase.
The outer monolayer of the outer membrane of Gram-negative bacteria consists of the lipid A component of lipopolysaccharide (LPS), a glucosamine-based saccharolipid that is assembled on the inner surface of the inner membrane. The first six enzymes of the lipid A pathway are required for bacterial growth and are excellent targets for the development of new antibiotics. Following assembly, the ABC transporter MsbA flips nascent LPS to the periplasmic side of the inner membrane, whereupon additional transport proteins direct it to the outer surface of the outer membrane. Depending on the bacterium, various covalent modifications of the lipid A moiety may occur during the transit of LPS to the outer membrane. These extra-cytoplasmic modification enzymes are therefore useful as reporters for monitoring LPS trafficking. Because of its conserved structure in diverse Gram-negative pathogens, lipid A is recognized as foreign by the TLR4/MD2 receptor of the mammalian innate immune system, resulting in rapid macrophage activation and robust cytokine production
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.