Segregation analysis between Lysopersicon esculentum (cultivated tomato) and L. hirsutum (wild form) in conjunction with positional verification by using near-isogenic lines demonstrated that biosynthesis of two structurally different classes of sesquiterpenes in these species is controlled by loci on two different chromosomes. A locus on chromosome 6, Sesquiterpene synthase1 ( Sst1 ), was identified for which the L. esculentum allele is associated with the biosynthesis of  -caryophyllene and ␣ -humulene. At this same locus, the L. hirsutum allele is associated with biosynthesis of germacrene B, germacrene D, and an unidentified sesquiterpene. Genomic mapping, cDNA isolation, and heterologous expression of putative sesquiterpene synthases from both L. esculentum and L. hirsutum revealed that Sst1 is composed of two gene clusters 24 centimorgans apart, Sst1-A and Sst1-B , and that only the genes in the Sst1-A cluster are responsible for accumulation of chromosome 6-associated sesquiterpenes. At a second locus, Sst2 , on chromosome 8, the L. hirsutum allele specified accumulation of ␣ -santalene, ␣ -bergamotene, and  -bergamotene. Surprisingly, the L. esculentum allele for Sst2 is not associated with the expression of any sesquiterpenes, which suggests that cultivated tomato may have a nonfunctional allele. Sesquiterpene synthase cDNA clones on chromosome 6 do not cross-hybridize on genomic DNA gel blots with putative sesquiterpene synthases on chromosome 8, an indication that the genes in Sst1 and Sst2 are highly diverged, each being responsible for the biosynthesis of structurally different sets of sesquiterpenes.
Oxidants in A. rubrum are also found in A. saccharum and A. saccharinum, and the ingestion of A. saccharum and A. saccharinum poses a potential threat to horses.
Hexane extracts of leaves of 307 accessions from 73 host plant species ofHelicoverpa zea were analyzed by gas chromatography (GC) and used forH. zea oviposition and neonate larvae orientation bioassays. The gas chromatographic (GC) retention times of compounds statistically associated with behavioral activity were identified by correlation of GC peak area with oviposition and larval orientation preferences. Although taxonomically diverse in their origin, compounds for study were purified from extracts of species of the genusLycopersicon, due to their relative abundance. The structures of eight long-chain alkanes associated with oviposition preference were assigned by mass spectrometry, and the structures of five similarly associated organic acids and a terpenoid alkene were identified by(1)H and(13)C nuclear magnetic resonance spectroscopy. The structures of a number of other phytochemicals from the plant leaves were identified for comparative purposes, including a previously unknown terpene, 7-epizingiberene. Bioassays were performed on the isolated acids and on the alkane wax fractions of severalLycopersicon species, and significant differences were found in oviposition stimulation for both classes of compounds. Of the hundreds of compounds found in the extracts, none were observed to act as oviposition deterrents. The results of these bioassays may be useful in explaining the broad host range ofH. zea, as well as the process and evolution of host plant selection for oviposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.