Immunoglobulin heavy chain (IgH) variable region exons are assembled from VH, D and JH gene segments in developing B lymphocytes. Within the 2.7 megabase (Mb) mouse IgH locus (IgH), V(D)J recombination is regulated to ensure specific and diverse antibody repertoires. Herein, we report a key IgH V(D)J recombination regulatory region, termed InterGenic Control Region-1 (IGCR1), that lies between the VH and D clusters. Functionally, IGCR1 employs CTCF looping/insulator factor binding elements and, correspondingly, mediates IgH loops containing distant enhancers. IGCR1 promotes normal B cell development and balances antibody repertoires by inhibiting transcription and rearrangement of DH-proximal VHs and promoting rearrangement of distal VHs. IGCR1 maintains ordered and lineage-specific VH(D)JH recombination, respectively, by suppressing VH joining to Ds not joined to JHs and VH to DJH joins in thymocytes. IGCR1 also is required to allow feedback regulation and allelic exclusion of proximal VH to DJH recombination. Our studies elucidate a long-sought IgH V(D)J recombination control region and implicate a new role for the generally expressed CTCF protein.
SUMMARY While chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated DNA double strand breaks (DSBs) within the c-myc oncogene or IgH locus of B lymphocytes induced for Activation Induced-cytidine Deaminase (AID)-dependent IgH class-switching. DSBs translocated very widely across the genome, but were preferentially targeted to transcribed chromosomal regions and also to numerous AID-dependent and AID-independent hotspots, with the latter being comprised mainly of cryptic genomic I-SceI targets. Comparison of translocation junctions with genome-wide nuclear run-ons revealed a marked association between transcription start sites and translocation targeting. The majority of translocation junctions were formed via end-joining with short micro-homologies. We discuss implications of our findings for diverse fields including gene therapy and cancer genomics.
SUMMARY Activation Induced cytidine Deaminase (AID) initiates Immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) and Ig variable region somatic hypermutation (SHM) in B lymphocytes by deaminating cytidines on template and non-template strands of transcribed DNA substrates. However, the mechanism of AID access to the template DNA strand, particularly when hybridized to a nascent RNA transcript, has been an enigma. We now implicate the RNA exosome, a cellular RNA processing/degradation complex, in targeting AID to both DNA strands. In B-lineage cells activated for CSR, the RNA exosome associates with AID, accumulates on IgH switch regions in an AID-dependent fashion, and is required for optimal CSR. Moreover, both the cellular RNA exosome complex and a recombinant RNA exosome core complex impart robust AID- and transcription-dependent DNA deamination of both strands of transcribed SHM substrates in vitro. Our findings reveal a role for non-coding RNA surveillance machinery in generating antibody diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.