The objective of this study was to assess the association of single nucleotide polymorphisms (SNP) developed at the calpastatin (CAST) and mu-calpain (CAPN1) genes with meat tenderness and palatability traits in populations with diverse genetic backgrounds. Three populations were used in the study. One population consisted of Bos taurus that included crossbred animals derived from Hereford, Angus, Red Angus, Limousin, Charolais, Gelbvieh, and Simmental (GPE7; n = 539). Another population consisted of Bos taurus with Bos indicus influence, including crossbred animals from Hereford, Angus, Brangus, Beefmaster, Bonsmara, and Romosinuano (GPE8; n = 580). The third population was Bos indicus and consisted of purebred Brahman (STARS; n = 444). Traits evaluated were meat tenderness measured as Warner-Bratzler shear force (WBSF; kg) at 14 d postmortem, and traits evaluated by trained sensory panels that included tenderness score, juiciness, and flavor intensity. A SNP at the CAST gene had a significant (P < 0.003) effect on WBSF and tenderness score in the GPE7 and GPE8 populations. Animals inheriting the TT genotype at CAST had meat that was more tender than those inheriting the CC genotype. The marker at the CAPN1 gene was significant (P < 0.03) for tenderness score in GPE7 and GPE8. Animals inheriting the CC genotype at CAPN1 had meat that was more tender than those inheriting the TT genotype. Markers at the CAST and CAPN1 genes were associated with flavor intensity in the GPE8 population. Animals inheriting the CC genotype at CAST and the TT genotype at CAPN1 produced steaks with an intense flavor when compared with the other genotypes. An interaction between CAST and CAPN1 was detected (P < 0.05) for WBSF on GPE8. The statistical significance of the interaction is questionable because of the limited number of observations in some cells. Markers developed at the CAST and CAPN1 genes are suitable for use in identifying animals with the genetic potential to produce meat that is more tender.
Objective of this study was to assess the association of SNP in the diacylglycerol O-acyltransferase 1 (DGAT1), thyroglobulin (TG), and micromolar calcium-activated neutral protease (CAPN1) genes with carcass composition and meat quality traits in Bos indicus cattle. A population of Brahman calves (n = 479) was developed in central Florida from 1996 to 2000. Traits analyzed were ADG, hip height, slaughter weight, fat thickness, HCW, marbling score, LM area, estimated KPH fat, yield grade, retail yield, sensory panel tenderness score, carcass hump height, and cooked meat tenderness measured as Warner-Bratzler shear force at 7, 14, and 21 d postmortem. Single nucleotide polymorphisms previously reported in the TG and DGAT1 genes were used as markers on chromosome 14. Two previously reported and two new SNP in the CAPN1 gene were used as markers on chromosome 29. One SNP in CAPN1 was uninformative, and another one was associated with tenderness score (P < 0.05), suggesting the presence of variation affecting meat tenderness. All three informative SNP at the CAPN1 gene were associated with hump height (P < 0.02). The TG marker was associated with fat thickness and LMA (P < 0.05), but not with marbling score. No significant associations of the SNP in the DGAT1 gene were observed for any trait. Allele frequencies of the SNP in TG and CAPN1 were different in this Brahman population than in reported allele frequencies in Bos taurus populations. The results suggest that the use of molecular marker information developed in Bos taurus populations to Bos indicus populations may require development of appropriate additional markers.
The three objectives of this study were to 1) test for the existence of beef tenderness markers in the CAPN1 gene segregating in Brahman cattle; 2) test existing CAPN1 tenderness markers in indicus-influenced crossbred cattle; and 3) produce a revised marker system for use in cattle of all subspecies backgrounds. Previously, two SNP in the CAPN1 gene have been described that could be used to guide selection in Bos taurus cattle (designated Markers 316 and 530), but neither marker segregates at high frequency in Brahman cattle. In this study, we examined three additional SNP in CAPN1 to determine whether variation in this gene could be associated with tenderness in a large, multisire American Brahman population. One marker (termed 4751) was associated with shear force on postmortem d 7 (P < 0.01), 14 (P = 0.015), and 21 (P < 0.001) in this population, demonstrating that genetic variation important for tenderness segregates in Bos indicus cattle at or near CAPN1. Marker 4751 also was associated with shear force (P < 0.01) in the same large, multisire population of cattle of strictly Bos taurus descent that was used to develop the previously reported SNP (referred to as the Germplasm Evaluation [GPE] Cycle 7 population), indicating the possibility that one marker could have wide applicability in cattle of all subspecies backgrounds. To test this hypothesis, Marker 4751 was tested in a third large, multisire cattle population of crossbred subspecies descent (including sire breeds of Brangus, Beefmaster, Bonsmara, Romosinuano, Hereford, and Angus referred to as the GPE Cycle 8 population). The highly significant association of Marker 4751 with shear force in this population (P < 0.001) confirms the usefulness of Marker 4751 in cattle of all subspecies backgrounds, including Bos taurus, Bos indicus, and crossbred descent. This wide applicability adds substantial value over previously released Markers 316 and 530. However, Marker 316, which had previously been shown to be associated with tenderness in the GPE Cycle 7 population, also was highly associated with shear force in the GPE Cycle 8 animals (P < 0.001). Thus, Marker 316 may continue to be useful in a variety of populations with a high percentage of Bos taurus backgrounds. An optimal marker strategy for CAPN1 in many cases will be to use both Markers 316 and 4751.
Our objective was to characterize further the acute-phase response following endotoxin (i.e. lipopolysaccharide; LPS) exposure in the bovine. Nine pure-bred Angus castrated males (i.e. steers; average body weight ¼ 299 AE 5 kg) were used in a randomized complete block design in environmentally controlled chambers, set at thermoneutral level, to characterize the acute physiological, endocrine, immune, and acute-phase protein responses following an i.v. bolus administration of 2.5 mg of LPS/kg body weight. One day before administration of LPS, all steers were fitted with an indwelling jugular vein catheter for serial blood collection. Blood samples were collected at 30-min intervals from À2 h to 8 h relative to the LPS challenge (time 0), and serum was harvested and stored at À80 C until analyzed for concentrations of cortisol, pro-inflammatory cytokines, and acute-phase proteins. Indicators of thermal status (i.e. rectal temperature, ruminal temperature, respiration rate, sweat rate, and skin temperatures) were measured at 30-min intervals from À1 h to 6 h relative to the challenge. Endotoxin exposure increased (P50.05) serum concentrations of cortisol, tumor necrosis factor-a (TNF-a), interleukin 1-b (IL-1b), IL-6, interferon-g (IFN-g), and serum amyloid A. Respiration rate, rectal temperature, and rump skin temperature also were increased (P50.05) following LPS administration. Endotoxin exposure dramatically decreased ear skin temperature (P ¼ 0.002), but tended to increase (P50.10) ruminal temperature, shoulder skin temperature, and shoulder sweat rate. Serum concentrations of acid soluble protein, a-acid glycoprotein, IL-4 and IL-2, and rump sweat rate were not altered (P40.24) by the challenge. To our knowledge, this report is the most complete characterization of the bovine acute-phase response to a bolus-dose endotoxin challenge conducted under thermoneutral conditions and should provide foundation data for future research.
Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.