Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Ground lignocellulosic biomass (Miscanthus giganteus, pine (Pinus sylvestris) and willow (Salix viminalis)) was pretreated with ionic liquid-water mixtures of 1-butyl-3-methylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate. A solid fraction enriched in cellulose was recovered, which was subjected to enzymatic hydrolysis. Up to 90% of the glucose and 25% of the hemicellulose contained in the original biomass were released by the combined ionic liquid pretreatment and the enzymatic hydrolysis. After the pretreatment, the ionic liquid liquor contained the majority of the lignin and the hemicellulose. The lignin portion was partially precipitated from the liquor upon dilution with water. The amount of hemicellulose monomers in the ionic liquid liquor and their conversion into furfurals was also examined. The performance of ionic liquid-water mixtures containing 1,3-dialkylimidazolium ionic liquids with acetate, methanesulfonate, trifluoromethanesulfonate and chloride anions was investigated. The applicability of the ionic liquid 1-butylimidazolium hydrogensulfate for lignocellulose pretreatment was also examined. It was found that ionic liquid liquors containing methyl sulfate, hydrogen sulfate and methanesulfonate anions were most effective in terms of lignin/cellulose fractionation and enhancement of cellulose digestibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.