Activation of the zinc-finger transcription factor early growth response (Egr)-1, initially linked to developmental processes, is shown here to function as a master switch activated by ischemia to trigger expression of pivotal regulators of inflammation, coagulation and vascular hyperpermeability. Chemokine, adhesion receptor, procoagulant and permeability-related genes are coordinately upregulated by rapid ischemia-mediated activation of Egr-1. Deletion of the gene encoding Egr-1 strikingly diminished expression of these mediators of vascular injury in a murine model of lung ischemia/reperfusion, and enhanced animal survival and organ function. Rapid activation of Egr-1 in response to oxygen deprivation primes the vasculature for dysfunction manifest during reperfusion. These studies define a central and unifying role for Egr-1 activation in the pathogenesis of ischemic tissue damage.
Carbon monoxide (CO) can arrest cellular respiration, but paradoxically, it is synthesized endogenously by heme oxygenase type 1 (Ho-1) in response to ischemic stress. Ho-1-deficient (Hmox1-/-) mice exhibited lethal ischemic lung injury, but were rescued from death by inhaled CO. CO drove ischemic protection by activating soluble guanylate cyclase and thereby suppressed hypoxic induction of the gene encoding plasminogen activator inhibitor-1 (PAI-1) in mononuclear phagocytes, which reduced accrual of microvascular fibrin. CO-mediated ischemic protection observed in wild-type mice was lost in mice null for the gene encoding PAI-1 (Serpine1). These data establish a fundamental link between CO and prevention of ischemic injury based on the ability of CO to derepress the fibrinolytic axis. These data also point to a potential therapeutic use for inhaled CO.
To better understand the molecular basis of chronic obstructive pulmonary disease (COPD), we used serial analysis of gene expression (SAGE) and microarray analysis to compare the gene expression patterns of lung tissues from COPD and control smokers. A total of 59,343 tags corresponding to 26,502 transcripts were sequenced in SAGE analyses. A total of 327 genes were differentially expressed (1.5-fold up-or down-regulated). Microarray analysis using the same RNA source detected 261 transcripts that were differentially expressed to a significant degree between GOLD-2 and GOLD-0 smokers. We confirmed the altered expression of a select number of genes by using real-time quantitative RT-PCR. These genes encode for transcription factors (EGR1 and FOS), growth factors or related proteins (CTGF, CYR61, CX3CL1, TGFB1, and PDGFRA), and extracellular matrix protein (COL1A1). Immunofluorescence studies on the same lung specimens localized the expression of Egr-1, CTGF, and Cyr61 to alveolar epithelial cells, airway epithelial cells, and stromal and inflammatory cells of GOLD-2 smokers. Cigarette smoke extract induced Egr-1 protein expression and increased Egr-1 DNA-binding activity in human lung fibroblast cells. Cytomix (tumor necrosis factor ␣, IL-1, and IFN-␥) treatment showed that the activity of matrix metalloproteinase-2 (MMP-2) was increased in lung fibroblasts from EGR1 control (؉/؉) mice but not detected in that of EGR1 null (؊/؊) mice, whereas MMP-9 was regulated by EGR1 in a reverse manner. Our study represents the first comprehensive analysis of gene expression on GOLD-2 versus GOLD-0 smokers and reveals previously unreported candidate genes that may serve as potential molecular targets in COPD.
Acute neutrophil (PMN) recruitment to postischemic cardiac or pulmonary tissue has deleterious effects in the early reperfusion period, but the mechanisms and effects of neutrophil influx in the pathogenesis of evolving stroke remain controversial. To investigate whether PMNs contribute to adverse neurologic sequelae and mortality after stroke, and to study the potential role of the leukocyte adhesion mole-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.