Achieving efficient in vivo delivery of siRNA to the appropriate target cell would be a major advance in the use of RNAi in gene function studies and as a therapeutic modality. Hepatocytes, the key parenchymal cells of the liver, are a particularly attractive target cell type for siRNA delivery given their central role in several infectious and metabolic disorders. We have developed a vehicle for the delivery of siRNA to hepatocytes both in vitro and in vivo, which we have named siRNA Dynamic PolyConjugates. Key features of the Dynamic PolyConjugate technology include a membrane-active polymer, the ability to reversibly mask the activity of this polymer until it reaches the acidic environment of endosomes, and the ability to target this modified polymer and its siRNA cargo specifically to hepatocytes in vivo after simple, low-pressure i.v. injection. Using this delivery technology, we demonstrate effective knockdown of two endogenous genes in mouse liver: apolipoprotein B (apoB) and peroxisome proliferator-activated receptor alpha (ppara). Knockdown of apoB resulted in clear phenotypic changes that included a significant reduction in serum cholesterol and increased fat accumulation in the liver, consistent with the known functions of apoB. Knockdown of ppara also resulted in a phenotype consistent with its known function, although with less penetrance than observed in apoB knockdown mice. Analyses of serum liver enzyme and cytokine levels in treated mice indicated that the siRNA Dynamic PolyConjugate was nontoxic and well tolerated.pH labile bonds ͉ nonviral siRNA delivery ͉ siRNA-polymer conjugates ͉ endosomolytic polymers
Chronic hepatitis B virus (HBV) infection is a major health concern worldwide, frequently leading to liver cirrhosis, liver failure and hepatocellular carcinoma. Evidence exists that high viral antigen load may play a role in chronicity. Production of viral proteins is thought to depend on transcription of viral covalently closed circular DNA (cccDNA). In a human clinical trial with ARC-520, a RNA interference (RNAi)-based therapeutic targeting HBV transcripts, HBV S antigen (HBsAg) was strongly reduced in treatment-naïve patients positive for HBV e antigen (HBeAg) but was reduced significantly less in patients that were HBeAg negative or had received long-term therapy with nucleos(t)ide viral replication inhibitors (NUCs). The molecular basis for this unexpected differential response was investigated in chimpanzees chronically infected with HBV. Several independent lines of evidence demonstrated that HBsAg was expressed not only from the episomal cccDNA minichromosome, but also from transcripts arising from HBV DNA integrated into the host genome. The latter was the dominant source in HBeAg negative chimpanzees. Many of the integrants detected in chimpanzees lacked target sites for the siRNAs in ARC-520, explaining the reduced response in HBeAg negative chimpanzees and by extension in HBeAg negative patients. Our results uncover a heretofore under-recognized source of HBsAg that may represent a strategy adopted by HBV to maintain chronicity in the presence of host immune surveillance and could alter trial design and endpoint expectations of new therapies for chronic HBV.
It has recently been shown that RNA interference can be induced in cultured mammalian cells by delivery of short interfering RNAs (siRNAs). Here we describe a method for efficient in vivo delivery of siRNAs to organs of postnatal mice and demonstrate effective and specific inhibition of transgene expression in a variety of organs.
Numerous anthropogenic chemicals of environmental concern--including some phenoxy acid herbicides, organophosphorus insecticides, polychlorinated biphenyls, phthalates, freon substitutes and some DDT derivatives--are chiral. Their potential biological effects, such as toxicity, mutagenicity, carcinogenicity, and endocrine disrupter activity, are generally enantiomer-selective, and different enantiomers are preferentially degraded (transformed) by micro-organisms in various environments. Here we use field and laboratory experiments to demonstrate that environmental changes in soils can alter these preferences, and to suggest that the preferences shift owing to different groups of related microbial genotypes being activated by different environmental changes. In Brazilian soils, almost all pasture samples preferentially transformed the non-herbicidal enantiomer of dichlorprop ((RS)-2-(2,4-dichlorophenoxy)propionic acid), while most forest samples either transformed the herbicidal enantiomer more readily or as rapidly as the non-herbicidal enantiomer. Organic nutrient enrichments shifted enantioselectivity for methyl dichlorprop ((RS)-methyl 2-(2,4-dichlorophenoxy)propionic acid) strongly towards preferentially removing the non-herbicidal enantiomer in soils from Brazil and North America, potentially increasing phytotoxicity of its residues relative to that of the racemate. Assessments of the risks chemical pollutants pose to public health and the environment need to take into account the chiral selectivity of microbial transformation processes and their alteration by environmental changes, especially for pesticides as up to 25 per cent are chiral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.