Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Regulators of G-protein signaling (RGS) proteins are important components of signal transduction pathways initiated through G-protein-coupled receptors (GPCRs). RGS proteins accelerate the intrinsic GTPase activity of G-protein ␣-subunits (G␣) and thus shorten the time course and reduce the magnitude of G-protein ␣-and ␥-subunit signaling. Inhibiting RGS action has been proposed as a means to enhance the activity and specificity of GPCR agonist drugs, but pharmacological targeting of protein-protein interactions has typically been difficult. The aim of this project was to identify inhibitors of RGS4. Using a Luminex 96-well plate bead analyzer and a novel flow-cytometric protein interaction assay to assess G␣-RGS interactions in a high-throughput screen, we identified the first small-molecule inhibitor of an RGS protein. Of 3028 compounds screened, 1,sulfonyl]-4-nitrobenzenesulfinimidoate (CCG-4986), inhibited RGS4/G␣ o binding with 3 to 5 M potency. It binds to RGS4, inhibits RGS4 stimulation of G␣ o GTPase activity in vitro, and prevents RGS4 regulation of -opioid-inhibited adenylyl cyclase activity in permeabilized cells. Furthermore, CCG-4986 is selective for RGS4 and does not inhibit RGS8. Thus, we demonstrate the feasibility of targeting RGS/G␣ protein-protein interactions with small molecules as a novel means to modulate GPCR-mediated signaling processes.
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified ‘Other protein targets’ which fall outside of the subsequent categorisation, there are six areas of focus: G protein‐coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Regulator of G protein signaling (RGS) proteins act to temporally modulate the activity of G protein subunits after G proteincoupled receptor activation. RGS proteins exert their effect by directly binding to the activated G␣ subunit of the G protein, catalyzing the accelerated hydrolysis of GTP and returning the G protein to its inactive, heterotrimeric form. In previous studies, we have sought to inhibit this GTPase-accelerating protein activity of the RGS protein by using small molecules. In this study, we investigated the mechanism of sulfonyl]-4-nitro-benzenesulfinimidoate], a previously reported small-molecule RGS inhibitor. Here, we find that CCG-4986 inhibits RGS4 function through the covalent modification of two spatially distinct cysteine residues on RGS4. We confirm that modification of Cys132, located near the RGS/G␣ interaction surface, modestly inhibits G␣ binding and GTPase acceleration. In addition, we report that modification of Cys148, a residue located on the opposite face of RGS4, can disrupt RGS/G␣ interaction through an allosteric mechanism that almost completely inhibits the G␣-RGS protein-protein interaction. These findings demonstrate three important points: 1) the modification of the Cys148 allosteric site results in significant changes to the RGS interaction surface with G␣; 2) this identifies a "hot spot" on RGS4 for binding of small molecules and triggering an allosteric change that may be significantly more effective than targeting the actual protein-protein interaction surface; and 3) because of the modification of a positional equivalent of Cys148 in RGS8 by CCG-4986, lack of inhibition indicates that RGS proteins exhibit fundamental differences in their responses to smallmolecule ligands.
Intracellular signaling cascades are a series of regulated protein-protein interactions that may provide a number of targets for potential drug discovery. Here, the authors examine the interaction of regulators of G-protein signaling (RGS) proteins with the G-protein Gαo, using a flow cytometry protein interaction assay (FCPIA). FCPIA accurately measures nanomolar binding constants of this protein-protein interaction and has been used in high-throughput screening. This report focuses on 5 RGS proteins (4, 6, 7, 8, and 16). To increase the content of screens, the authors assessed high-throughput screening of these RGS proteins in multiplex, by establishing binding constants of each RGS with Gαo in isolation, and then in a multiplex format with 5 RGS proteins present. To use this methodology as a higher-content multiplex protein-protein interaction screen, they established Z-factor values for RGS proteins in multiplex of 0.73 to 0.92, indicating this method is suitable for screening using FCPIA. To increase throughput, they also compressed a set of 8000 compounds by combining 4 compounds in a single assay well. Subsequent deconvolution of the compounds mixtures verified the identification of active compounds at specific RGS targets in their mixtures using the polyplexed FCPIA method. (Journal of Biomolecular Screening 2009: 610-619)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.