In 2017, an autologous chimeric antigen receptor (CAR) T cell therapy indicated for children and young adults with relapsed and/or refractory CD19 acute lymphoblastic leukaemia became the first gene therapy to be approved in the USA. This innovative form of cellular immunotherapy has been associated with remarkable response rates but is also associated with unique and often severe toxicities, which can lead to rapid cardiorespiratory and/or neurological deterioration. Multidisciplinary medical vigilance and the requisite health-care infrastructure are imperative to ensuring optimal patient outcomes, especially as these therapies transition from research protocols to standard care. Herein, authors representing the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Hematopoietic Stem Cell Transplantation (HSCT) Subgroup and the MD Anderson Cancer Center CAR T Cell Therapy-Associated Toxicity (CARTOX) Program have collaborated to provide comprehensive consensus guidelines on the care of children receiving CAR T cell therapy.
BackgroundIndoleamine 2,3-dioxygenase (IDO) is an enzyme with immune-suppressive properties that is commonly exploited by tumors to evade immune destruction. Anti-tumor T cell responses can be initiated in solid tumors, but are immediately suppressed by compensatory upregulation of immunological checkpoints, including IDO. In addition to these known effects on the adaptive immune system, we previously showed widespread, T cell-dependent complement deposition during allogeneic fetal rejection upon maternal treatment with IDO-blockade. We hypothesized that IDO protects glioblastoma from the full effects of chemo-radiation therapy by preventing vascular activation and complement-dependent tumor destruction.MethodsTo test this hypothesis, we utilized a syngeneic orthotopic glioblastoma model in which GL261 glioblastoma tumor cells were stereotactically implanted into the right frontal lobes of syngeneic mice. These mice were treated with IDO-blocking drugs in combination with chemotherapy and radiation therapy.ResultsPharmacologic inhibition of IDO synergized with chemo-radiation therapy to prolong survival in mice bearing intracranial glioblastoma tumors. We now show that pharmacologic or genetic inhibition of IDO allowed chemo-radiation to trigger widespread complement deposition at sites of tumor growth. Chemotherapy treatment alone resulted in collections of perivascular leukocytes within tumors, but no complement deposition. Adding IDO-blockade led to upregulation of VCAM-1 on vascular endothelium within the tumor microenvironment, and further adding radiation in the presence of IDO-blockade led to widespread deposition of complement. Mice genetically deficient in complement component C3 lost all of the synergistic effects of IDO-blockade on chemo-radiation-induced survival.ConclusionsTogether these findings identify a novel mechanistic link between IDO and complement, and implicate complement as a major downstream effector mechanism for the beneficial effect of IDO-blockade after chemo-radiation therapy. We speculate that this represents a fundamental pathway by which the tumor regulates intratumoral vascular activation and protects itself from immune-mediated tumor destruction.
4. Cells incubated in ouabain* for 24 hr bind an additional amount of ouabain when exposed to 2 x 10-7 M ouabain* in K-free Krebs.5. There is a close relationship between the % of the total ouabain bound in 24 hr and the % inhibition of the Na efflux suggesting that this ouabain is bound to the Na pumps.6 LESLEY J. BOARDMAN AND OTHERS 9. These results are compatible with the hypothesis that partial blocking of Na pumps leads to the production of more pumping sites by the cell.
The Na/K-exchange characteristics, ouabain-binding kinetics, and Na pump turnover rates of synchronously contracting monolayers of neonatal rat myocardial cells were studied. The cells exchange Na rapidly (T1/2 = 35 s) with a mean Na flux of approximately 25 (pmol/cm2)/s. The half time (T1/2) of K exchange is much longer (12 min); the mean K flux is 13 (pmol/cm2)/s. Active Na/K transport, as measured by K influx, is relatively ouabain sensitive, and 10(-6) M ouabain produces half-maximal inhibition. Ouabain (10(-2)M) inhibits 60% of the Na efflux and 75% of the K influx. The cells bind [3H]ouabain rapidly (T1/2 = 8 min), but release it very slowly (T1/2 = 11 h), and both the amount bound and the rate of binding were inversely proportional to extracellular K. Specific [3H]ouabain binding demonstrates saturation reaching a maximum of 1.6 x 10(6) molecules per cell at 2 x 10(-7) M [3H]ouabain. From cell surface area and ouabain-sensitive flux measurements, the Na pump density was calculated at 720/micrometer2 with an individual pump turnover rate of 50/s. Thus the studies indicate that despite their neonatal origin, the behavior of the Na pump in these cells is very similar to that in other mammalian tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.