BackgroundTGFβ signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGFβ’s immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGFβ pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses.ResultsIn vitro treatment with galunisertib reversed TGFβ and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent anti-tumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGFβ and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy.ConclusionsTogether these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.
Purpose: Transforming growth factor β (TGFβ) is a pleiotropic cytokine that affects tumor growth, metastasis, stroma, and immune response. We investigated the therapeutic efficacy of anti-TGFβ receptor II (TGFβ RII) antibody in controlling metastasis and tumor growth as well as enhancing antitumor immunity in preclinical tumor models.Experimental Design: We generated neutralizing antibodies to TGFβ RII and assessed the antibody effects on cancer, stroma, and immune cells in vitro. The efficacy and mechanism of action of the antibody as monotherapy and in combination with chemotherapy in suppression of primary tumor growth and metastasis were evaluated in several tumor models.Results: Anti-TGFβ RII antibody blocked TGFβ RII binding to TGFβ 1, 2, and 3, and attenuated the TGFβ-mediated activation of downstream Smad2 kinase, invasion of cancer cells, motility of endothelial and fibroblast cells, and induction of immunosuppressive cells. Treatment with the antibody significantly suppressed primary tumor growth and metastasis and enhanced natural killer and CTL activity in tumorbearing mice. Immunohistochemistry analysis showed cancer cell apoptosis and massive necrosis, and increased tumor-infiltrating T effector cells and decreased tumor-infiltrating Gr-1+ myeloid cells in the antibody-treated tumors. Fluorescence-activated cell sorting analysis indicated the significant reduction of peripheral Gr-1+/CD11b+ myeloid cells in treated animals. Concomitant treatment with the cytotoxic agent cyclophosphamide resulted in a significantly increased antitumor efficacy against primary tumor growth and metastasis.Conclusions: These preclinical data provide a foundation to support using anti-TGFβ RII antibody as a therapeutic agent for TGFβ RII-dependent cancer with metastatic capacity.
Purpose: Combination strategies leveraging chemotherapeutic agents and immunotherapy have held the promise as a method to improve benefit for patients with cancer. However, most chemotherapies have detrimental effects on immune homeostasis and differ in their ability to induce immunogenic cell death (ICD). The approval of pemetrexed and carboplatin with anti-PD-1 (pembrolizumab) for treatment of non-small cell lung cancer represents the first approved chemotherapy and immunotherapy combination. Although the clinical data suggest a positive interaction between pemetrexed-based chemotherapy and immunotherapy, the underlying mechanism remains unknown.Experimental Design: Mouse tumor models (MC38, Colon26) and high-content biomarker studies (flow cytometry, Quantigene Plex, and nCounter gene expression analysis) were deployed to obtain insights into the mechanistic rationale behind the efficacy observed with pemetrexed/anti-PD-L1 combination. ICD in tumor cell lines was assessed by calreticulin and HMGB-1 immunoassays, and metabolic function of primary T cells was evaluated by Seahorse analysis.Results: Pemetrexed treatment alone increased T-cell activation in mouse tumors in vivo, robustly induced ICD in mouse tumor cells and exerted T-cell-intrinsic effects exemplified by augmented mitochondrial function and enhanced T-cell activation in vitro. Increased antitumor efficacy and pronounced inflamed/immune activation were observed when pemetrexed was combined with anti-PD-L1.Conclusions: Pemetrexed augments systemic intratumor immune responses through tumor intrinsic mechanisms including immunogenic cell death, T-cell-intrinsic mechanisms enhancing mitochondrial biogenesis leading to increased T-cell infiltration/activation along with modulation of innate immune pathways, which are significantly enhanced in combination with PD-1 pathway blockade.See related commentary by Buque et al., p. 6890
Cancer patients receiving epidermal growth factor receptor (EGFR) antibody therapy often experience an acneiform rash of uncertain etiology in skin regions rich in pilosebaceous units. Currently, this condition is treated symptomatically with very limited, often anecdotal success. Here, we show that a monoclonal antibody targeting murine EGFR, ME1, caused a neutrophil-rich hair follicle inflammation in mice, similar to that reported in patients. This effect was preceded by the appearance of lipid-filled hair follicle distensions adjacent to enlarged sebaceous glands. The cytokine tumor necrosis factor-A (TNFA), localized immunohistochemically to this affected region of the pilosebaceous unit, was specifically upregulated by ME1 in skin but not in other tissues examined. Moreover, skin inflammation was reduced by cotreatment with the TNFA signaling inhibitor, etanercept, indicating the involvement of TNFA in this inflammatory process. Interleukin-1, a cytokine that frequently acts in concert with TNFA, is also involved in this process given the efficacy of the interleukin-1 antagonist Kineret. Our results provide a mechanistic framework to develop evidence-based trials for EGFR antibody-induced skin rash in patients with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.