International audienceFast humanwalking includes a phase where the stance heel rises from the ground and the stance foot rotates about the stance toe. This phase where the biped becomes underactuated is not present during the walk of current humanoid robots. The objective of this study is to determine whether the introduction of this phase for a 3-D bipedal robot is useful to reduce the energy consumed in the walking. In order to study the efficiency of this new gait, two cyclic gaits are presented. The first cyclic motion is composed of successive single-support phases with a flat stance foot on the ground, and the stance foot does not rotate. The second cyclic motion is composed of single-support phases that include a subphase of rotation of the supporting foot about the toe. The single-support phases are separated by a double-support phase. For simplicity, this double-support phase is considered as instantaneous (passive impact). For these two gaits, optimal motions are designed by minimizing the torques cost. The given performances of actuators are taken into account. It is shown that, for a fast motion, a foot-rotation subphase is useful to reduce the cost criterion. These gaits are illustrated with simulation results
Fast human walking includes a phase where the stance heel rises from the ground and the stance foot rotates about the stance toe. This phase where the biped becomes under-actuated is not present during the walk of humanoid robots. The objective of this study is to determine if this phase is useful to reduce the energy consumed in the walking. In order to study the efficiency of this phase, six cyclic gaits are presented for a planar biped robot. The simplest cyclic motion is composed of successive single support phases with flat stance foot on the ground. The most complex cyclic motion is composed of single support phases that include a subphase of rotation of the stance foot about the toe and of finite time double support phase. For the synthesis of these walking gaits, optimal motions with respect to the torque cost, are defined by taking into account given performances of actuators. It is shown that for fast motions a foot rotation sub-phase is useful to reduce the criteria cost. In the optimization process, under-actuated phase (foot rotation phase), fullyactuated phase (flat foot phase) and over-actuated phase (double support phase) are considered.
International audienceAn algorithm of parametric optimization to achieve optimal cyclic gaits in space for a thirteen-link 3D bipedal robot with twelve actuated joints is proposed. The cyclic walking gait is composed of successive single support phases and impulsive impacts with full contact between the sole of the feet and the ground. The evolution of the joints are chosen as spline functions. The parameters to define the spline functions are determined using an optimization under constraints on the dynamic balance, on the ground reactions, on the validity of impact, on the torques and on the joints velocities. The cost functional considered is represented by the integral of the torques norm. The torques and the constraints are computed at sampling times during one step to evaluate the cost functional for a feasible walking gait. To improve the convergence of the optimization algorithm the explicit analytical gradient of the cost functional with respect to the optimization parameters is calculated using the recursive computation of torques. The algorithm is tested for a bipedal robot whose numerical walking results are presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.