By predicting the traffic load on network links, a network operator can effectively pre-dispose resource-allocation strategies to early address, e.g., an incoming congestion event. Traffic loads on different links of a telecom is know to be subject to strong correlation, and this correlation, if properly represented, can be exploited to refine the prediction of future congestion events. Machine Learning (ML) represents nowadays the state-of-the-art methodology for discovering complex relations among data. However, ML has been traditionally applied to data represented in the Euclidean space (e.g., to images) and it may not be straightforward to effectively employ it to model graph-stuctured data (e.g., as the events that take place in telecom networks). Recently, several ML algorithms specifically designed to learn models of graph-structured data have appeared in the literature. The main novelty of these techniques relies on their ability to learn a representation of each node of the graph considering both its properties (e.g., features) and the structure of the network (e.g., the topology). In this paper, we employ a recently-proposed graph-based ML algorithm, the Diffusion Convolutional Recurrent Neural Network (DCRNN), to forecast traffic load on the links of a real backbone network. We evaluate DRCNN's ability to forecast the volume of expected traffic and to predict events of congestion, and we compare this approach to other existing approaches (as LSTM, and Fully-Connected Neural Networks). Results show that DCRN outperforms the other methods both in terms of its forecasting ability (e.g., MAPE is reduced from 210% to 43%) and in terms of the prediction of congestion events, and represent promising starting point for the application of DRCNN to other network management problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.