The discovery of isozyme-selective
histone deacetylase (HDAC) inhibitors
is critical for understanding the biological functions of individual
HDACs and for validating HDACs as drug targets. The isozyme HDAC10
contributes to chemotherapy resistance and has recently been described
to be a polyamine deacetylase, but no studies toward selective HDAC10
inhibitors have been published. Using two complementary assays, we
found Tubastatin A, an HDAC6 inhibitor, to potently bind HDAC10. We
synthesized Tubastatin A derivatives and found that a basic amine
in the cap group was required for strong HDAC10 binding. HDAC10 inhibitors
mimicked knockdown by causing dose-dependent accumulation of acidic
vesicles in a neuroblastoma cell line. Furthermore, docking into human
HDAC10 homology models indicated that a hydrogen bond between a cap
group nitrogen and the gatekeeper residue Glu272 was responsible for
potent HDAC10 binding. Taken together, our data provide an optimal
platform for the development of HDAC10-selective inhibitors, as exemplified
with the Tubastatin A scaffold.
Since the approval
of three hydroxamic acid-based HDAC inhibitors
as anticancer drugs, such functional groups acquired even more notoriety
in synthetic medicinal chemistry. The ability of hydroxamic acids
(HAs) to chelate metal ions makes this moiety an attractive metal
binding group—in particular, Fe(III) and Zn(II)—so that
HA derivatives find wide applications as metalloenzymes inhibitors.
In this minireview, we will discuss the most relevant features concerning
hydroxamic acid derivatives. In a first instance, the physicochemical
characteristics of HAs will be summarized; then, an exhaustive description
of the most relevant methods for the introduction of such moiety into
organic substrates and an overview of their uses in medicinal chemistry
will be presented.
New benzofuranhydrazones 3-12 were easily prepared and assayed for their radical-scavenging ability. Hydrazones 3-12 showed different extent antioxidant activity in DPPH, FRAP and ORAC assays. Good antioxidant activity is related to the number and position of hydroxyl groups on the arylidene moiety. High antioxidant activity is showed by the 2-hydroxy-4-(diethylamino)benzylidene derivative 11. Furthermore, hydrazones 3-12 showed photoprotective capacities with satisfactory in vitro SPF as compared to the commercial PBSA sunscreen filter. The antiproliferative effects of the hydrazones 3-12 was tested on erythroleukemia K562 and Colo-38 melanoma human cells. All the compounds showed growth inhibition in the micromolar to sub micromolar concentration range. If taken together these results points to benzofuran hydrazones as potential multifunctional molecules especially in the treatment of neoplastic diseases being the good antioxidant properties of 5, 7 and 11 correlated to their high antiproliferative activity.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.