B cell lymphoproliferative disorders (BLPD) developed in eight patients following bone marrow transplantation (BMT) for leukemia (five patients) or immunodeficiency (three patients). Recipients of T depleted marrow from a mismatched donor were at particularly high risk of this complication. Six of 25 (24%) recipients of mismatched T depleted bone marrow developed BLPD. In contrast, none of 47 matched T depleted transplants, one of ten (10%) who received non-depleted marrow from an unrelated donor, and only one of 424 matched non-depleted transplants were associated with BLPD. Epstein-Barr virus (EBV) specific serology and DNA hybridization studies demonstrating five to 50 copies of EBV genome/cell in involved tissues implicate this virus as an associated etiologic agent. Restriction fragment length polymorphism (RFLP) and cytogenetic analysis of involved tissue demonstrated donor origin (five of seven) or host origin (two of seven). Histologic appearance was similar to EBV-induced polymorphic B cell proliferations described following solid organ transplantation, or which occur de novo in primary immunodeficiency. Six of seven patients with adequate tissue available for study were found to have monoclonal proliferations by: in situ immunofluorescence (six of seven), and/or immunoglobulin gene rearrangement, (four of six). Cytogenetic analysis of involved tissues from four patients showed a normal karyotype, whereas two had multiple clonal chromosomal abnormalities. Seven patients died despite aggressive attempts at therapy with combinations of antiviral, immunologic, and chemotherapeutic agents.
(1) Secondary cytogenetic changes do not confer a poor prognosis in APL patients treated with anthracycline/cytarabine (Ara-C)-based chemotherapy; and (2) A highly significant relationship exists between the PML-RAR alpha 5 isoform (intron 3 PML genomic breakpoint) and secondary cytogenetic changes in APL.
B cell lymphoproliferative disorders (BLPD) developed in eight patients following bone marrow transplantation (BMT) for leukemia (five patients) or immunodeficiency (three patients). Recipients of T depleted marrow from a mismatched donor were at particularly high risk of this complication. Six of 25 (24%) recipients of mismatched T depleted bone marrow developed BLPD. In contrast, none of 47 matched T depleted transplants, one of ten (10%) who received non-depleted marrow from an unrelated donor, and only one of 424 matched non-depleted transplants were associated with BLPD. Epstein-Barr virus (EBV) specific serology and DNA hybridization studies demonstrating five to 50 copies of EBV genome/cell in involved tissues implicate this virus as an associated etiologic agent. Restriction fragment length polymorphism (RFLP) and cytogenetic analysis of involved tissue demonstrated donor origin (five of seven) or host origin (two of seven). Histologic appearance was similar to EBV-induced polymorphic B cell proliferations described following solid organ transplantation, or which occur de novo in primary immunodeficiency. Six of seven patients with adequate tissue available for study were found to have monoclonal proliferations by: in situ immunofluorescence (six of seven), and/or immunoglobulin gene rearrangement, (four of six). Cytogenetic analysis of involved tissues from four patients showed a normal karyotype, whereas two had multiple clonal chromosomal abnormalities. Seven patients died despite aggressive attempts at therapy with combinations of antiviral, immunologic, and chemotherapeutic agents.
A cell line, designated RS4;11, was established from the bone marrow of a patient in relapse with an acute leukemia that was characterized by the t(4;11) chromosomal abnormality. The cell line and the patient's fresh leukemic cells both had the t(4;11)(q21;q23) and an isochromosome for the long arm of No. 7. Morphologically, all cells were lymphoid in appearance. Ultrastructurally and cytochemically, approximately 30% of the cells possessed myeloid features. The cells were strongly positive for terminal deoxynucleotidyl transferase. They were HLA-DR positive and expressed surface antigens characteristic for B lineage cells, including those detected by anti-B4, BA-1, BA-2, and PI153/3. Immunoglobulin gene analysis revealed rearrangements of the heavy chain and kappa chain genes. The cells lacked the common acute lymphoblastic leukemia antigen and antigenic markers characteristic of T lineage cells. The cells reacted with the myeloid antibody 1G10 but not with other myeloid monoclonal antibodies. Treatment with 12-O-tetradecanoyl- phorbol-13-acetate induced a monocyte-like phenotype demonstrated by cytochemical, functional, immunologic, and electron microscopic studies. The expression of markers of both early lymphoid and early myeloid cells represents an unusual phenotype and suggests that RS4;11 represents a cell with dual lineage capabilities. To our knowledge, RS4;11 is the first cell line established from t(4;11)-associated acute leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.