Samples, 17 in total, from the EDML core drilled at Kohnen station Antarctica are analysed for 14CO and 14CO2 with a dry‐extraction technique in combination with accelerator mass spectrometry. Results of the in situ produced 14CO fraction show a very low concentration of in situ produced 14CO. Despite these low levels in carbon monoxide, a significant in situ production is observed in the carbon dioxide fraction. For the first time we found background values for the ice samples which are equal to line blanks. The data set is used to test a model for the production of 14C in the ice matrix, in combination with a degassing as 14CO2 and possibly as 14CO into the air bubbles. Application of the model, for which no independent validation is yet possible, offers the opportunity to use radiocarbon analysis as dating technique for the air bubbles in the ice. Assigning an arbitrary error of 25% to the calculation of the in situ production leads to age estimates, after correction for the in situ production, which are in agreement with age estimates based on a volcanic layer match of EDML to the Dome C timescale in combination with a correction for firn diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.