This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.
In this study, we report that a 17-nucleotide independently folding RNA G-quadruplex (GQ) domain within the 294-nucleotide human VEGF IRES A interacts with the 40S ribosomal subunit. Footprinting and structure mapping analyses indicate that the RNA GQ forms independently and interacts directly with the 40S ribosomal subunit in the absence of other protein factors. Moreover, a filter binding assay in conjunction with enzymatic footprinting clearly established that the GQ-forming domain singularly dictates the binding affinity and also the function of internal ribosomal entry site (IRES) A. The deletion of the GQ domain abrogates the binding of the 40S ribosomal subunit to the IRES, which impairs cap-independent translation initiation. The findings provide a unique and defined role for a noncanonical RNA structure in cap-independent translation initiation by cellular IRESs. The GQ structure when present in an IRES acts as an essential element in contrast to their generally accepted inhibitory role in translation. The results of this study explain the hitherto unknown mechanistic necessity of the GQ structure in IRES function.
RNA G-quadruplex (GQ) structures act as regulators of a diverse array of cellular processes including translation, pre-mRNA processing, and mRNA targeting. We report here a strategy of harnessing the natural ability of RNA GQs to inhibit translation by rationally inducing a GQ on a targeted mRNA to knockdown endogenous gene expression. We chose to target eIF-4E because of its key role in translation initiation and overexpression in multiple cancers and with the expectation that downregulation of eIF-4E would result in antiproliferation of cancer cells. Targeted hybrid (RNA:DNA) GQ structures were induced at the 5'-untranslated region (UTR) and the protein coding region of the eIF-4E mRNA by rationally designed and partially modified extraneous DNA sequences and their effect on eIF-4E expression was determined. The formation of a stable induced G-quadruplex was established by biophysical and biochemical methods. Thermodynamic parameters calculated from CD melting indicate formation of a stable induced GQ at a physiologically relevant salt concentration. We established the specificity and efficacy of the induced GQ formation by monitoring the targeted repression of a reporter gene. Most importantly we have demonstrated that inducing GQ in the 5'-UTR and the protein coding region of eIF-4E mRNA in human cancer cells results in 30% and 60% inhibition of the endogenous protein expression, respectively. Treating with the GQ inducing oligonucleotide sequences resulted in a decrease in the viability of human cancer cells in a dose-dependent manner. The above concept opens up a new strategy for targeted modulation of endogenous gene expression.
This work was carried out in collaboration between all authors. Authors DB and SD designed the study, wrote the protocol, analyses of the study and wrote the first draft of the manuscript. Author SS managed the literature searches, performed the immunophenotypic analysis. Authors SCS and RM observed the clinical findings and patient profile. All authors read and approved the final manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.