The expression of proinflammatory and immunoregulatory cytokines rapidly increases in the lungs after hemorrhage, and such alterations contribute to the frequent development of acute inflammatory lung injury in this setting. Blood loss also produces elevations in catecholamine concentrations in the pulmonary and systemic circulation. In the present experiments, we used ␣ -and  -adrenergic receptor blockade to examine in vivo interactions between hemorrhage-induced adrenergic stimulation and pulmonary cytokine expression. Treatment of mice with the ␣ -adrenergic receptor antagonist phentolamine prevented not only the elevation in mRNA levels of IL-1  , TNF-␣ , and TGF- 1, the increase in IL-1  protein, but also the activation of nuclear factor (NF)-B and cyclic AMP response element binding protein, which occurred in lung cells of untreated animals during the first hour after hemorrhage. In contrast, treatment before hemorrhage with the  -adrenergic receptor antagonist propranolol was associated with increases in mRNA levels for IL-1  , TNF-␣ , and TGF- 1, which were greater than those present in untreated hemorrhaged mice, and did not prevent hemorrhage-associated increases in lung IL-1  protein. Treatment with propranolol prevented hemorrhageinduced phosphorylation of cyclic AMP response element binding protein, but increased hemorrhage-associated activation of NF-B. These results demonstrate that hemorrhage initially increases pulmonary cytokine expression through ␣ -but not  -adrenergic stimulation, and suggest that such ␣ -adrenergic-mediated effects occur through activation of the transcriptional regulatory factor NF-B. ( J. Clin. Invest. 1997. 99:1516-1524.)
Endotoxemia produces elevations in catecholamine levels in the pulmonary and systemic circulation as well as rapid increases in neutrophil number and proinflammatory cytokine expression in the lungs. In the present experiments, we examined the effects of endogenous and exogenous adrenergic stimulation on endotoxin-induced lung neutrophil accumulation and activation. Levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 mRNAs were increased in lung neutrophils from endotoxemic mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic or control mice. Treatment with the β-adrenergic antagonist propranolol before endotoxin administration did not affect trafficking of neutrophils to the lungs or the expression of IL-1β, TNF-α, or MIP-2 by lung neutrophils. Administration of the α-adrenergic antagonist phentolamine before endotoxemia did not alter lung neutrophil accumulation as measured by myeloperoxidase (MPO) levels but did result in significant increases in IL-1β, TNF-α, and MIP-2 mRNA expression by lung neutrophils compared with endotoxemia alone. Administration of the α1-adrenergic agonist phenylephrine before endotoxin did not affect trafficking of neutrophils to the lungs but was associated with significantly increased expression of TNF-α and MIP-2 mRNAs by lung neutrophils compared with that found after endotoxin alone. In contrast, treatment with the α2-adrenergic agonist UK-14304 prevented endotoxin-induced increases in lung MPO and lung neutrophil cytokine mRNA levels. The suppressive effects of UK-14304 on endotoxin-induced increases in lung MPO were not affected by administration of the nitric oxide synthase inhibitor N-nitro-l-arginine methyl ester. These data demonstrate that the initial accumulation and activation of neutrophils in the lungs after endotoxemia can be significantly diminished by α2-adrenergic stimulation. Therapy with α2-adrenergic agents may have a role in modulating inflammatory pulmonary processes associated with sepsis-induced acute lung injury.
The nuclear regulatory factor (NF)-kappa B is activated in the lungs of patients with acute respiratory distress syndrome (ARDS). In experimental models of acute lung injury, activation of NF-kappa B contributes to the increased expression of immunoregulatory cytokines and other proinflammatory mediators in the lungs. Because of the important role that NF-kappa B activation appears to play in the development of acute lung injury, we examined cytoplasmic and nuclear NF-kappa B counterregulatory mechanisms in lung mononuclear cells, using a murine model in which inflammatory lung injury develops after blood loss. Sustained activation of NF-kappa B was present in lung mononuclear cells over the 4-h period after blood loss. The activation of NF-kappa B after hemorrhage was accompanied by alterations in levels of the NF-kappa B regulatory proteins I kappa B alpha and Bcl-3. Cytoplasmic and nuclear I kappa B alpha were increased and nuclear Bcl-3 was decreased during the first hour after blood loss, but, by 4 h posthemorrhage, cytoplasmic and nuclear I kappa B alpha levels were decreased and nuclear levels of Bcl-3 were increased. Inhibition of xanthine oxidase activity in otherwise unmanipulated unhemorrhaged mice resulted in increased levels of I kappa B alpha and decreased amounts of Bcl-3 in nuclear extracts from lung mononuclear cells. No changes in the levels of nuclear I kappa B alpha or Bcl-3 occurred after hemorrhage when xanthine oxidase activity was inhibited. These results demonstrate that blood loss, at least partly through xanthine oxidase-dependent mechanisms, produces alterations in the levels of both I kappa B alpha and Bcl-3 in lung mononuclear cell populations. The effects of hemorrhage on proteins that regulate activation of NF-kappa B may contribute to the frequent development of inflammatory lung injury in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.